Mplus: A Tutorial

Abby L. Braitman, Ph.D. Old Dominion University

November 7, 2014
NOTE: Multigroup Analysis code was updated May 3, 2016

About Me

- B.A. from UMD
- Briefly at NYU
- Ph.D. from ODU in 2012 (AE)
- 2-year postdoc from NIAAA
- Two great loves:
- Alcohol research
- Complex data modeling

Today

- Introduction to Mplus and basic functions
- Intro:
- Exporting data from SPSS
- Code terminology
- Reading output
- Basics:
- Path analyses
- Latent variable modeling
- Full SEM
- Indirect effects (mediation)
- Bootstrapping
- Diagrammer
- Troubleshooting

Today

- Intermediate functions
- Latent growth modeling
- Fixing and freeing paths
- Non-continuous outcomes
- Multilevel modeling
- Other forms of estimation
- Adding and relaxing equality constraints
- LPA/LCA

Today

- Hands-on training
- Sample dataset and suggested activities and models
- Walk through an example together
- I will give immediate hands-on training for those who are able to bring the software on their laptop
- I will also provide ad hoc hands-on training for those who want help as they explore the software in their labs and offices for up to one week after the workshop ends

Why Mplus?

- Wide choice of data estimators and algorithms
- It excels at handling categorical, nominal, binary, censored, and continuous non-normal data
- Several output options
- Beyond traditional SEM:
- Multilevel modeling (longitudinal and cross-sectional, up to three levels of nesting)
- Mixture modeling (latent profiles, latent classes, growth mixture) - Simulation analyses (Monte Carlo)
- Error messages are somewhat helpful (model is not identified versus need more iterations to reach convergence)
- Support: manual, website, Muthéns themselves
- New: Pictures!
- Helpful for double-checking yourself, and sharing with others

What You Need

- The editor (a big, grey expanse)
- The Users Guide (in Program Files by default)
- Data

Exporting Your Data

- Must be numeric
- NAMES must be ≤ 8 characters
- y1-y4
- X1-x5

Exporting Your Data

- Make sure it's the right encoding

Exporting Your Data

- Make sure you do not export the variable NAMES.

Exporting Your Data

- You may want to copy-paste your variable names from SPSS into Mplus when it's time to enter them
- If you accidentally omit one typing by hand, data will be mis-matched
- This is the time to shorten them if you haven't already: PROBLEMSt2 \rightarrow PROBSt2

Getting Started

- Title: Optional, but helpful
- Data: Required
- Exported from SPSS
- Variable: Required
- NAMES ARE [your variable names];
- Lists ALL variables in the dataset
- USEVARIABLES ARE: Required if you're using only some of the variables in the dataset for your model
- MISSING IS all (999);
- Saying 999 is the missing data indicator, and that's true for all variables
- Model: How you specify what analysis you want

for a continuous dependent variable
with two predictors;
VARIABLE: NAMES ARE y1 y2 y 3 y $41 \times 2 \times 3 \times 4 \times 5$
USEVARIABLES ARE y1 x 1 x 3 ;
MISSING IS all (999);
MODEL: Y1 ON x1 xu;

Exporting Missing Data

- Missing data cannot be blank
- 5, 7, 8, [.], 32 becomes 5, 7, 8, 32

| x_{1} | x_{2} | x_{3} | Drinks | Age | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 7 | 8 | 32 | | |

- You need some sort of indicator (that is not a plausible value)
- 5, 7, 8, 999, 32 becomes 5, 7, 8, [missing], 32
- You must tell Mplus what your indicator is
- The language gets longer if you use different indicators for different variables, but it is possible

Basic Model Language

- y ON xi x2 x3
(regression)

- xi WITH x2
(correlation)

- f BY item 1 item 2 item item item (factors or latent variables)

Semi-Colons and Exclamation Points

- Semi-colons are how you complete a command/item in mplus.
Every statement

Today's Uses of a Semicolon
 must end with it.

- Exclamation Points are how you make notes to yourself (or inactivate code).

Semi-Colons and Exclamation Points

Mediation_PlacePlanLimit_TVPEcomplexinp

```
    Mplus mulilevel mediation for dolly drinki
    with pBS (dally) as mediator,
    place context and pes as predictors.
    Drinks as outcome. replicate HLM findings:
DATA: FILE is DailyL1mplus.cav:
    INBLE: Hames are sova WeexiD Home Bar Reat Party
    Other Alone Friend Fam OPlace drinks pbspla
    pbado pbsa11 time weekend age genal raceD
    greekD residD marryD; (ar Rest Party
    Other drinkg pbsplan gendD:
    Cl
CEMTERIMG = GRANDM
l 'BOOT = = 
    Drinks of Home Bar Rest Party Other pbsplan
    pbsplan ON Home Bar Rest Party Other:
    drinks or gendds:
    *wthms
    36 | drinks on phador
    drinks ow Home Bar Rest Party Other:
    $1 pbsdo oN Home:
    lol
```


Double-Checking

- Make sure your data were read correctly by asking for descriptives
- Match with your descriptives from SPSS
- Analysis: TYPE = BASIC;

for a continuous dependent variable
with two predictors;
DARIABLE: NAMES ARE y1 y2 y3 y 4 x 1 x 2 x 3 x 4 x 5 ;
USEVARIABLES ARE y1 x1 x 3 ;
MISSING IS all (999);
Analysis: TYPE $=$ BASIC;
!MODEL: y1 ON x1 x3;

Path Analysis

- Series of regressions: but DV's can now also be IV's!
- Great for testing models/theories
- PICTURE and CODE and OUTPUT

Reading Your Output		
ate		
manax of amaxare		
	\% ${ }^{2}$	
	\bigcirc	
cosered deremetat veristes		
Sters	asasememe	

| | Reading Your Output |
| :--- | :---: | :---: | :---: | :---: |

Reading Your Output							
\square				healthbelief.out			
R-Square							
Observed Variable	Estimate	S.E.	Est./s.e.	Two-Tailed P-Value			
INTENT pthreat	0.849 0.655	$\begin{aligned} & 0.015 \\ & 0.025 \end{aligned}$	$\begin{array}{r} 57.390 \\ 26.185 \end{array}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$			
quaitit of numericai resuits							
Condition Number for the Information Matrix (ratio of amalleat to largeat eigenvalue)				$0.477 \mathrm{E}-02$			
confidence intervais of modei results							
$\underset{\substack{\text { intent } \\ \text { Costben } \\ \text { cthreat }}}{\text { On }}$	-0.524	-0.471	-0.445	-0.305	-0.165	-0.138	-0.086
PTHREAT CuEs2act	0.762 -0.985	- $\begin{array}{r}0.791 \\ -0.883\end{array}$	0.806 -0.830	-0.883	0.960 -0.285	0.975 -0.232	1.003 -0.130
							4.027
${ }_{\text {SEVERITY }}^{\text {SUSCPT }}$	1.793	1.882	1.927	2.163	2.399	2.444	2.533
							32

Indirect Effects

- Also called mediation

- $c=$ total effect
- $c^{\prime}=$ direct effect
- $a b=$ indirect effect

Bootstrapping

- Bootstrapping example with means:

Original		sample 1	sample 2	sample 3		sample 1000
$\left.\begin{array}{l}31.15 \\ 26.41 \\ 30.82 \\ 21.59 \\ 26.76 \\ 26.02 \\ 28.32 \\ 21.26 \\ 19.50 \\ 24.03\end{array}\right]$	\Rightarrow	$\left[\begin{array}{l}31.15 \\ 26.41 \\ 30.82 \\ 21.59 \\ 26.76 \\ 26.02 \\ 28.32 \\ 28.32 \\ 19.50 \\ 19.50\end{array}\right]$,	$\left[\begin{array}{l}31.15 \\ 26.41 \\ 30.82 \\ 30.82 \\ 26.76 \\ 26.76 \\ 28.32 \\ 21.26 \\ 19.50 \\ 24.03\end{array}\right]$,	$\left[\begin{array}{l}31.15 \\ 31.15 \\ 30.82 \\ 21.59 \\ 26.76 \\ 26.02 \\ 28.32 \\ 21.26 \\ 21.26 \\ 24.03\end{array}\right]$		$\left[\begin{array}{l}31.15 \\ 26.41 \\ 26.41 \\ 21.59 \\ 26.76 \\ 26.02 \\ 26.02 \\ 21.26 \\ 19.50 \\ 24.03\end{array}\right]$
$\mu ' \mathrm{~s}$: 25.586		26.32	26.03	26.24		24.59

- Notice that some values are repeated in the samples because they were sampled with replacement.

Bootstrapping

- Applied to mediation:

- Each parameter estimate gets a set of possible values (in this case, 1000 of them)

Bootstrapping

- Final estimate $=$ midpoint of ordered estimates
- Significance assessed with middle 95% of ordered estimates
$a=\left[\begin{array}{c}0.968 \\ 0.969 \\ 0.971 \\ \ldots \\ 1.031 \\ \ldots \\ 1.062 \\ 1.062 \\ 1.064\end{array}\right], \mathrm{b}=\left[\begin{array}{c}0.737 \\ 0.739 \\ 0.740 \\ \ldots \\ 0.762 \\ \ldots \\ 0.781 \\ 0.783 \\ 0.783\end{array}\right], \therefore a b=\left[\begin{array}{c}0.713 \\ 0.716 \\ 0.719 \\ \ldots \\ 0.786 \\ \ldots \\ 0.829 \\ 0.832 \\ 0.833\end{array}\right]$
- Indirect effect $=0.833$ ($95 \% \mathrm{Cl}: 0.719,0.829$)

Latent Variable Modeling (CFAs)

- Crux of SEM (1 minute review)
- Assumes underlying, unobserved, latent construct is driving observed items
- Different from composite scores
- Allows for Measurement Error
- Allows for best combination weighting of items

Latent Variable Modeling (CFAs)

Latent Variable Modeling (CFAs)

MODEL RESULTS					
					- Default is to set first item
ITTM $^{\text {ITEM }}$	-0.317	${ }^{0.183}$	${ }^{-1.731}$	0.083	loading to 1
${ }_{\text {IT }}^{\text {ITEM M }}$	${ }_{-0}^{-0.416}$	- 0.184	${ }_{-1.654}$	0.107 0.098	(to scale
тіем5	0.781	0.149	5.249	0.000	factor)
ITIM1	0.485	0.069	6.987	0.000	
Item 2	-1.108	0.187	-5.932	0.000	- Alternative is
${ }_{\text {ITEM4 }}$	0.027 0.499	- ${ }^{0.185}$	0.144 1.980	${ }^{0.886}$	to set
ITEM5	0.001	0.047	0.028	0.978	variance of
$\underset{F}{\text { Variances }}$	1.375	0.287	4.788	0.000	factor to 1
${ }_{\text {ITEMM }}$	17.032 17.294	0.260 1.097	3.963 15.764	0.000 0.000	
ITтM $^{\text {TTEM4 }}$	16.982	${ }^{1.077}$	- $\begin{array}{r}15.761 \\ 15.757\end{array}$	0.000	42
ІІем9	31.518	2.000	15.757	0.000	

Full SEM Models

- Code (old and new)

File Edit View Mplus Graph Window Help

-
TLE: this is an example of a full SEM
model with all continuous variables.
All data are fake;
DATA: FILE IS fullsEM.dat;
VARIABLE: NAMES ARE $Q 3$ Q4 $Q 5$ Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

gen3 gen4 gen5 target1 target2 target3 target4 target5 age
FTPT res greek gpa race hisp year athlete gender marry
DrinkTyp DrinkHvy Probs;
USEVARIABLES ARE gen1 gen2 gen3 gen4 gen5 target1 target2
target3 target4 target5 age marry DrinkTyp;
ANALYSIS: ITERATIONS $=10000$;
MODEL: \quad gY gen1 gen2 gen 3 gen 4 gen 5
F2 BY target1 target2 target3 target4 target5; \} Factor Loadings
DrinkTyp on F1 F2 age marry; \} Paths
F2 ON F1;
OUTPUT: $\bmod ($ all $)$ stand cint;

Full SEM Models

Full SEM Models

Troubleshooting

- The manual
- The website
- The software itself

Using the Website

1) The model converged and terminated normally, however, the variance estimate for intercepts ior the 1 st and ard classes were negative. This seems to indicate some problems
with the model, what are your suggestions (this doesn't happen in the linear model, only in quadratic)?
2) The standard errors for some of the estimates are quite large for the quadratic 3 class model
(e.g., class 2 the variance and mean of the intercept). What might be the problem? Again this
is not the case with the linear model.
Thanks in advance.
Monda Oxford

Emuthen oosted on Wednesday, November $29,2000-10: 03$ am
The fact that growth mixture modeling has more than one class tends to reduce the within-
class variation and in some cases it can be set at zero. You may not get a significant worsent of fit (e.g by likelihood-ratio chi-square difference testing) If you fix the negative variance is not appropriate for the data.

The
the fact that you might only noed a linear to mave more problems than the linear might point to nodeling your model-data fit on an individual level is mentioned in the growth mixture

Section 2

- Advanced model language
- Latent Growth Models
- Non-continuous outcomes
- Multi-group analyses
- Fixing and freeing paths
- Adding and relaxing equality constraints
- Latent Profile/Class Analysis
- Multilevel Modeling

Basic Model Language

- y ON x1 x2 x3 (regression)

- x1 WITH x2
(correlation)

- f BY item1 item2 item3 item4 item5 (factors or latent variables)

Mathematical Operators

Symbol CODE	Definition	Example
$\mathbf{+}$	Addition	$\mathbf{y}+\mathbf{x ;}$
-	Subtraction	$\mathbf{y}-\mathbf{x ;}$
*	Multiplication	\mathbf{y} * $\mathbf{x ;}$
/	Division	$\mathbf{y} / \mathbf{x} ;$
**	Exponentiation	\mathbf{y} *2 $;$

CODE	Definition	Alternate Symbol CODE		
EQ	Equal	$==$	CODE	Definition
NE	Not Equal	/=	AND	logical and
GE	Greater than or Equal to	$>=$	OR	logical or
LE	Less than or Equal to	$<=$	NOT	logical not
GT	Greater Than	$>$		
LT	Less Than	$<$		

Advanced Model Language

- USEOBS or USEOBSERVATIONS
- conditional statement to select observations
- USEOBS ARE gender EQ 1$\} \begin{aligned} & \text { Running the model with } \\ & \text { just males }\end{aligned}$
- USEOBS ARE x3 NE 1$\}$ Use evervone ExCEPTgroup 1
- USEOBS ARE age GE 18\} Excluding those who are underage
- Combine with DEFINE
- DEFINE: IF (drinks LT 5 AND probs EQ

0) THEN group $=1$; Identifying low to moderate drinkers

- USEOBS ARE group NE 1;\} Use everyone EXCEPT them

Language Matters

how can u get herpes
how can u get hep c
Pross Enter lo soach

Google how can one personl

how can one person make a difference
how can one person change society
how can one person inspire others
how can one person change your life Press Enter lo search

Advanced Model Language

Constraints

- * frees a parameter, or denotes a specific starting value - example: $y 1^{*} .5$; with examining the likelihood that it is 0.5
- @ fixes a parameter at a a specific value
- example: y1@0; - The variance of y 1 is constrained or set to 0
- (number) constrains parameters to be equal
- example: $\mathrm{f} 1 \mathrm{ON} x 1(1)$; The influence of x 1 predicting f 1 is the
- f2 ON x1 (1);

Advanced Model Language

[intercept] versus not

- list of variables without brackets refers to variances and residual variances
- example: f1 y1-y9;
- $\mathrm{f} 1 @ 0$; - The variance of $f 1$ is set to 0 Var. if exogenous; resid. var. if endogenou
- [list of variables] refers to means, intercepts, thresholds
- example: [f1, y1-y9];
$-[f 1] @ 0 ;$ - The mean of $f 1$ is set to 0 Mean if exogenous; intcpt if endogenous

Latent Growth Models

\qquad

Latent Growth Models

- Can specify with long code:

Int BY time101;
Int BY time201;
Int BY time Int BY time2@1;
Int BY time2@1;
Slope BY time1@0; Slope BY time2@1 Slope BY time 3 C 2 Slope BY time4@3:
[time1 time2 time3 time4]@o

- Or use Mplus' shortcut

Intercept slope | time1@0 time2@1 time3@2 time4@3;

- Assumes intercept is 1's all around
- Creates paths you specify for slope
- Allows intercept and slope to correlate
- Sets variable intercepts to 0 so that all prediction is in the mean of the latent variables (Intercept and Slope)
"Intercept" and "slope" are still labels I created. Can be whatever you want.

Latent Growth Models

Latent Growth Models

Latent Growth Models

TITLE: this is an example of a linear growth
model for a continuous outcome
DATA: FILE IS ex6.10.dat;
VARIABLE: NAMES ARE y11-y14 x1 x2 a31-a34;
USEVARIABLES ARE y11-y14;
MODEL: i s q y11@ y12@1 y13@2 y14@3;

- Added " q " for the quadratic term
- Assigned loadings for linear term
- Mplus knows to square loadings for " q "

Latent Growth Models

Latent Growth Models

Latent Growth Models


```
TITLE: this is an example of a linear growth
model for a continuous outcome with predictors;
```

DATA: FILE IS ex6.10.dat;
VARIABLE: NAMES ARE y11-y14 x1 x2 a31-a34;
USEVARIABLES ARE y11-y14 x1 $\times 2$ a $31-\mathrm{a} 34$ mod; - Not in dataset. Create in DEFINE.
MODEL: [is | y11@0 y12@1 y13@2 y14@3; - LGM language

| 1 3 ON X1 x 2 mod;
 Y11 ON a31; | - ON statements |
| :--- | :--- | :--- |

Y12	ON a32;	(path analyses)

Y13 ON a33;
Y14 ON a34;

- Combining LGM language with ON statements
- Time-invariant predictors for \underline{i} and \underline{s}
- Time-varying predictors for individual timepoints

Multigroup Analysis Code

- Approach changed in newer versions
- Version 6 and older
- The "MODEL" describes the overall model to be estimated for each group
- Default is that ALL code under the "MODEL" command was constrained to equality across groups unless an exception was made
- Exceptions were specified using "MODEL [group]" command after the overall command
- Version 7 and newer
- The "MODEL" describes the overall model to be estimated for each group
- Default is for measurement to be constrained, but structure to be different - Factor loadings are held equal across groups
- Intercepts (for continuous variables) and thresholds (for categorical variables) are held equal across groups
Paths such as ON and WITH are estimated separately for each group
- Exceptions were specified using "MODEL [group]" command after the overall command

Multigroup Analyses:
 Version 6 and older

TITLE: this is an example of a multigroup
analysis with all continuous indicators
Testing invariance, too
All data are fake;
DATA: FILE IS multigroup.dat;
VARIABLE: NAMES ARE y 1 y 2 y 3 y 45 y 6 x\} $x 2$ x 3 gender; GROUPING IS gender ($1=$ male $2=$ female);
How you indicate you are doing a multigroup analysis: F2 BY y4 y5 y6; F1 F 2 ON x 1 x 2 x 3
MODEL female:

F1	BY
1	Y1
F2	Y
3 ;	

F1 F2 ON x1 x2 x3;
F2 ON F1;
OUTPUT: stand cint;

Second set of model code allows estimates to be different from original model

Inactivated CFA code because construct needs to be consistently measured across groups

Multigroup Analyses:
 Version 7 and newer

E multigroupTEST.inp

TITLE: testing multigroup code in version 7.
All data are fake;
DATA: FILE IS multigroup.dat
VARIABLE: NAMES are v1 v2 v3 v4 v5 v6 x1 x2 x3 gender; GROUPING IS gender ($1=$ male 2 =female);
MODEL: FY y1 y2 y3. How you indicate you are doing a multigroup analysis:
F1 BY Y1 y2 y3; \quad Specifying grouping variable AND group labels
F1 F2 ON x1 x2 x3; F2 ON F1;

\qquad F1 BY Y1 Y2 Y3; | $\mid l$ | F1 F2 ON $\times 1 \times 2 \times 3 ;$ | | |
| :--- | :--- | :--- | :--- |
| $!$ | F2 | ON F1; | |

OUTPUT: stand cint;
Second set of model code allows estimates to be different from original model

Inactivated CFA code because construct needs to be consistently measured across groups

Inactivated path code because new default for v7+ is to allow these to vary across groups

Multigroup Analyses					
E					
MODEL ReSULTS					
	Estimate	s.E.	Est./s.e.	${ }_{\text {Iwa-Tailed }}^{\text {F-Value }}$	
${ }^{\text {F1 }} \mathrm{Y} 1{ }^{\text {BY }}$	1.000	0.000	999.000	999.000	
Y2	1.016	0.021	48.830	0.000	Factor loadings
צ3	0.644	0.026	24.837	0.000	
F2 ${ }^{\text {84 }}$ BY					
Y4 $\begin{aligned} & \text { Y } \\ & \text { Y5 }\end{aligned}$	1.000 1.001	0.000 0.018	999.000 55.703	999.000 0.000	
צ6	1.007	0.018	54.562	0.000	
F2 On					
F1 ON					Predictive paths
${ }^{\mathrm{F} 1} \mathrm{x} 1 \mathrm{l}^{\text {ON }}$	0.515	0.027	18.963	0.000	
x2	0.598	0.032	18.596	0.000	
$\times 3$	0.719	0.045	15.863	0.000	
F2 On					
x_{1}	0.517	0.034	15.006	0.000	
x2 $\times 3$	${ }^{0.419}$	0.040	10.447 4.204	0.000	
x 3	0.218	0.052	4.204	0.000	
Intercepts					101

Testing Measurement Invariance

TITLE: this is an example of a multigroup
analysis with all continuous indicators.
Testing invariance, too.
All data are fake;
DATA: FILE IS multigroup.dat;
VARIABLE: NAMES ARE y 1 y 2 y 44 y $46 \times 1 \times 2 \times 3$ gender;
GROUPING IS gender ($1=$ male $2=$ female) ;
MODEL:

F2 ON F1;
$\begin{array}{ll}\text { F1 } & \text { BY Y1 } \\ \text { Y2 } & \text { y3; } \\ \text { F2 } & \text { BY } \\ \text { y } & \text { y } \\ \text { y }\end{array}$
F2 BY Y4 y5 y6;
F1 $\mathrm{F}^{2} 2 \mathrm{ON} \times 1 \mathrm{X} 2 \mathrm{X} 3 ;$
F1 F2 ON
F2 ON
F 1 ;
ETPUT: stand cint;

- Run with factor loadings free, and constrained
- Compare model fit
- Can conduct likelihood ratio test (nested models)

Noncontinuous Variables

- CATEGORICAL ARE (or IS): names of binary and ordered categorical (ordinal) variables;
- NOMINAL ARE (or IS): names of unordered categorical (nominal) variables;
- COUNT ARE (or IS) : names of count variables;
- Poisson distribution models
- Zero-Inflated Poisson (ZIP) models

Noncontinuous Variables

- CAN run analyses with categorical outcomes
- Somewhat equivalent to logistic regressions

Noncontinuous Variables

- Still must follow rules of SEM (and regression)
- No nominal predictors
- Need to dummy code into relevant groups $(0,1)$
- EXAMPLE: Marital status $=6$ groups (unordered)

Noncontinuous Variables

- Poisson (count) variables

Fullsem_Poissoninp TITLE: this is an example of a full SEM
 model with all continuous variables

All data are fake;

 gen3 gen4 gen5 target1 target2 target3 target 4 target5
\qquad
USEVARIABLES ARE gen1 gen2 gen3 gen4 gen5 target1 target2
target3 target 4 target5 age DrinkTyp;
!MISSING IS all (999)
ANALYSTS: ARE DTINKTYP;
MODEL
${ }_{\text {F2 }}$ BY Gen1 gen 2 gen 3 gen 4 gen5;
DrinkTyp on F1 F2 age,
DrinkTyp

Noncontinuous Variables					
W. fullsem_poisson.out					
target 4	1.116	0.068	16.503	0.000	
targets	1.124	0.071	15.931	0.000	
${ }^{F 2} \quad \text { F1 } \quad \text { ON }$	1.856	0.426	4.358	0.000	Traditional
drinktyp on					coefficients
F1	-7.010	1.651	-4.246	0.000	(adjusted)
F2	2.628	0.559	4.701	0.000	
$\underset{\text { AGE }}{\text { DRINKTYP }} \quad \text { ON }$	0.009	0.013	0.676	0.499	
Intercepts					
GEN1	4.738	0.036	132.315	0.000	
GEN2	4.337	0.049	87.647	0.000	
GEN3	4.779	0.032	151.592	0.000	
GEN4	4.586	0.044	105.039	0.000	
gens	4.630	0.041	113.954	0.000	
target 1	4.593	0.049	93.616	0.000	
target2	4.436	0.054	82.281	0.000	
target 3	4.535	0.055	81.867	0.000	
target 4	4.499	0.054	82.837	0.000	
targets	4.552	0.054	84.542	0.000	
DRINKTYP	0.778	0.157	4.953	0.000	
Variances					

Noncontinuous Variables

- Zero-Inflated Poisson (ZIP models)

USEVARIABLES ARE gen1 gen 2 gen 3 gen 4 gen5 target target3 target 4 target 5 age DrinkTyp;
!MISSING IS all (99p)
CNALYSIS: ITERATIONS $=1000$
ANALYS
F1 BY gen1 gen2 gen3 gen4 gen5;
F2 BY target1 target2 target3 target4 target5;
DrinkTyp on F1 F2 age;
FrinkTyp
OUTPUT: mod(all) stand cint;

Noncontinuous Variables

- One exception to rule:
- LATENT VARIABLES may be nominal predictors
- Most common version of this...

Latent Profile/Class Analysis

- Mplus calls this "mixture modeling with crosssectional data" (chapter 7)
- Longitudinal version is often called Growth Mixture Modeling (chapter 8)
- Only covering cross-section data today (LPA/LCA), but same principles apply to longitudinal data (GMM)

Latent Profile/Class Analysis

ELPA_c3.inp

TITLE: Latent Profile Analysis of Zimbardo Time Perspective.
Continuous indicators.
DATA: FILE IS LPA.dat;
VARIABLE: NAMES ARE id sex relat alc1-alc6 typweek heavweek BTP ABTP
peakBAC TDDtyp TDDheav age raceD liveD greekD Qtyp Qheav
ztpi_pp ztpi_pn ztpi_ph ztpi_pf ztpi_f;
USEVARIABLES ARE ztpi_pp ztpi_pn ztpi_ph ztpi_pf ztpi_f;
CLASSES $=\mathrm{c}(3)$; C does not exist in the data. Creating it (like any other latent factor)
Missing are ALI (999); "(3)" indicates we believe there are three groups/profiles.
Analysis:
TYPE $=$ MIXTURE; \leftarrow Default type is GENERAL, so need to include code to change it to MIXTU
starts=20 5; \&Number of initial starts and final stage optimizations. Default of 10,2 is

Tech11;
! savedata:
!save=cprobabilities :
!file is cprob.dat;
\&Allows you to save the probabilities of being in each class for participant. Helpful if you plan on predicting classes from covariates, or using class to predict outcomes. Not necessary YET.

Tech11 output includes Lo-Mendell-Rubin Adjusted LRT
(compares fit for current number of classes to one fewer)

Latent Profile/Class Analysis

- Fit (abbreviated list)

final class counts and proportions for the latent classes BASED ON THE ESTIMATED MODEL

Latent Profile/Class Analysis

- Relative Entropy and class counts/proportions

Latent Profile/Class Analysis

- Compare model fit across number of classes
\(\left.$$
\begin{array}{|c|c|c|c|c|c|c|}\hline \text { Classes: } & \text { AIC } & \text { BIC } & \begin{array}{c}\text { Adjusted } \\
\text { BIC }\end{array} & \begin{array}{c}\text { Relative } \\
\text { Entropy }\end{array} & \text { LMR } p & \begin{array}{c}\text { Proportion of } \\
\text { smallest } \\
\text { group }\end{array}
$$

\hline \mathbf{1} \& 3952.805 \& 3994.790 \& 3963.050 \& - \& -- \& --

\hline \mathbf{2} \& 3788.383 \& 3855.559 \& 3804.775 \& 0.620 \& .0000 \& .341

\hline \mathbf{3} \& 3756.886 \& 3849.253 \& 3779.425 \& 0.700 \& .0694 \& .091

\hline \mathbf{4} \& 3736.655 \& 3854.213 \& 3765.341 \& 0.754 \& .1910 \& .012

\hline \mathbf{5} \& 3722.782 \& 3865.530 \& 3757.614 \& 0.773 \& .1497 \& .013

\hline \mathbf{6} \& 3715.194 \& 3883.134 \& 3756.174 \& 0.753 \& .7717 \& .012

\hline \mathbf{7} \& 3703.795 \& 3896.925 \& 3750.921 \& 0.766 \& .7638 \& .011\end{array}\right]\)| Groups |
| :--- |
| with |
| ptn $<.05$ |

Separate Analyses:
CLASSES $=c(1), \quad$ CLASSES $=c(2), \quad$ CLASSES $=c(3), \quad$ CLASSES $=c(4)$, CLASSES $=c(5)$, CLASSES $=c(6)$, CLASSES $=c(7)$

Latent Profile/Class Analysis

- Zimbardo's Time Perspective (5 Facets)

No nominal predictors, so... Dummy Code!

Latent Profile/Class Analysis

- Class Means (for final set of classes)

Latent Profile/Class Analysis

- Model with classes predicting drinking
E. LPA_C3_qtyp.inp

TITLE: Latent Profiles predicting typical drinking.
Bootstrapping results (because drinking is non-normal).
DATA: FILE IS LPAwithclasses.dat;
VARIABLE: NAMES ARE id sex relat alc1-alc6 typweek heavweek BTP ABTP
peakBAC TDDtyp TDDheav age raceD lived greekD Otyp Oheav
ztpi_pp ztpi_pn ztpi_ph ztpi pf ztpi_f class class1 class3:
USEVARIABLES ARE sex Qtyp class1 class3;
Missing are ALL (999);
Analysis:
Bootstrap $=5000$;
MODEL: Qtyp ON class1 class3 s
output:
sampsta
sampstat stand cint (bcboot);

- Copy-pasted classifications from cprob . dat into my original dataset
- Exported into LPAwithclasses.dat
class $=$ nominal variable ($1,2,3$)
class1 and class3 are dummy coded (0,1) with second class as category of reference (largest class)

Latent Profile/Class Analysis

E LCA.inp

TITLE: this is an example of a LCA with binary latent class indicators
DATA: FILE IS LCA.dat;
VARIABLE: NAMES ARE u1-u4 $\times 1$-x10; USEVARIABLES = u1-u4; CLASSES $=c$ (2); CATEGORICAL $=$ u1-u4;
ANALYSIS: TYPE = MIXTURE;
OUTPUT: TECH11;

Remember, CATEGORICAL means binary or ordinal.
If you have unordered $3+$ categories, you need to use NOMINAL

Multilevel Modeling

- ABANDON SEM!

- Latent variables/structures are not appropriate
- Different number of units within cluster, different spacing of time, etc.
- Conduct Multilevel Modeling (MLM), Hierarchical Linear Modeling (HLM), nested models, mixed models, random effects models, random coefficient models, etc.

Multilevel Modeling

- Other than LGMs (with matching timepoints), multilevel modeling is impossible in most SEM software packages
- Can use HLM (software by SSI)
- Limited functionality beyond HLM
- No bootstrapping
- No path analyses where outcomes are also predictors (e.g., mediation)
- Can use SAS, MIXOR, MLWIN, VARCL, BUGS, or R, but need to learn another language

Multilevel Modeling

Level 1:
Drinks $_{t i}=\pi_{0 i}+\pi_{1 i}\left(\right.$ Bar $\left._{t i}\right)+\pi_{2 i}\left(\right.$ Rest $\left._{t i}\right)+\pi_{3 i}\left(\right.$ Party $\left._{t i}\right)+\pi_{4 i}\left(\right.$ Other $\left._{t i}\right)+\pi_{5 i}\left(P B S_{t i}\right)+e_{t i}$
Level 1: Drinks for person i at time t depends on: their personal intercept, plus where they drank that day (dummy coded across
4 variables), plus their PBS that day, plus random error

Level 2:

$\pi_{0 i}=\beta_{00}+\beta_{01}\left(\right.$ Gender $\left._{i}\right)+r_{0 i}$
$\pi_{1 i}=\beta_{10}$,
$\pi_{2 i}=\beta_{20}$,
$\pi_{3 i}=\beta_{30}, \quad$ Level 2: A person's personal intercept depends on: their gender.
$\pi_{5 i}=\beta_{50}$
$\pi_{4 i}=\beta_{40} \quad$ The effect of location does not vary by gender
The effect of location does not vary by gender.
The influence of PBS does not vary by gender.
-

Multilevel Modeling in Mplus

- TYPE = TWOLEVEL RANDOM
\%WITHIN\%
drinks ON Home Bar Rest Party Other PBS;
Level 1: Regress drinks on level-1 predictors (location and PBS). \%BETWEEN\% Drinks for person i at time t depends on: where they drank that day and plus their PBS that day.
Personal intercept $\left(\pi_{0 i}\right)$ and random error $\left(e_{t i}\right)$ are included as Personal
default.
Level 2: Regress drinks on level-2 predictor (gender).
Personal intercept is influenced by gender.
- TYPE = COMPLEX

Drinks ON Home Bar Rest Party Other pbsdo;
Drinks ON gendD; Same interpretation as above.

Multilevel Modeling in Mplus

- Code relevant to both: TYPE=COMPLEX \& TYPE=TWOLEVEL RANDOM
- CLUSTER = name of grouping variable;
- CENTERING IS GRANDMEAN (variable names);
- Groupmean (variable names);
- TYPE = TWOLEVEL RANDOM code only
- WIthin ARE names of level-1 observed variables;
- BETWEEN ARE names of level-2 observed variables;

Multilevel Modeling: TWOLEVEL RANDOM	
W HLM_nobootinp	
TITLE: Mplus multilevel mediation for daily drinking with PBS (daily) as mediator. Place Context and PBS as predictors. Drinks as outcome. No mediation yet to replicate HLM findings; DATA: FILE is DailyL1mplus.csv; VARIABLE: Names are SONA WeekID Home Bar Rest Party Other Alone Friend Fam OPlace drinks pbsplan pbsdo pbsall time Weekend age gendD raceD greekD residD marryD; USEVariables are Home Bar Rest Party Other drinks pbsdo gendD: WITHIN $=$ Home Bar Rest Party Other; BETWEEN = gendD; CLUSTER $=$ SONA; CENTERING $=$ GRANDMEAN (pbscio); ANALYSIS: TYPE $=$ TWOLEVEL RANDOM; MODEL: \square \%WITHIN\% drinks ON Home Bar Rest Party Other PBSdo; \%BETWEEN\% drinks $O N$ gendD; !Output: stand;	Note "drinks" is not under WITHIN or BETWEEN. Outcome does not need to be specified by level.

Multilevel Modeling: TWOLEVEL RANDOM					
IT Mim_noboot.out					
model results					
	Estimate	s.e.	Ese./s.e.	$\begin{gathered} \text { Two-Tailed } \\ \text { P-Value } \end{gathered}$	
Within Level					
DRINKS ${ }_{\text {der }}^{\text {Hoge }}$					
${ }_{\text {EAR }}^{\text {Home }}$	0.926 1.800	0.359 0.458	2.583 3.928	0.010 0.000	
rest	0.018	0.396	0.047	0.963	
Earty	3.279	0.368	8.908	0.000	
${ }_{\text {OTHER }}^{\text {OTHER }}$	2.038 -0.136	0.559 0.092	3.645 -1.480	0.000 0.139	
FBSDO	-0.136	0.092	-1.480	0.139	
$\begin{aligned} & \text { Residual Variances } \\ & \text { DRTNKS } \end{aligned}$	9.047	1.041	8. 693	0.000	
Between Level					
$\underset{\text { GENDD }}{\operatorname{DRINK}} \quad \text { ON }$	1.823	0.447	4.081	0.000	
Intercepts DRINKS	1.637	0.424	3.863	0.000	
Residual Variances DRINKS	5.601	0.983	5.697	0.000	144

	Multilevel Modeling: COMPLEX
- HLM_TYPEcomplex.inp	
	```TITLE: Mplus multilevel mediation for daily drinking with PBS (daily) as mediator. Place Context and PBS as predictors. Drinks as outcome. No mediation yet to replicate HLM findings; DATA: FILE is DailyL1mplus.csv; VARIABLE: Names are SONA WeekID Home Bar Rest Party Other Alone Friend Fam OPlace drinks pbsplan pbsdo pbsall time Weekend age gendD raceD greekD residD marryD; USEVariables are Home Bar Rest Party Other drinks pbsdo gendD; CLUSTER = SONA; CENTERING = GRANDMEAN (pbsdo); No WITHIN or BETWEEN anywhere. ANALYSIS: TYPE = COMPLEX; MODEL: Drinks ON Home Bar Rest Party Other pbsdo; Drinks ON gendD; !Output: stand;```
	145



## Remember... Language Matters



## This Section

- Analyze examples together
- I provide SPSS data
- Together: export datafile
- Write necessary language for Mplus to read data
- Write model language for desired analyses
- Full SEM with continuous outcomes
- Latent Growth Models

Basic Model Language

- y ON x1 x2 x3
(regression)

- x1 WITH x2
(correlation)

- f BY item1 item2 item3 item4 item5 (factors or latent variables)



## Data

- Mplus3_fullSEM.sav
- No missing data
- Convert to Mplus-compatible file
- Save as
- .dat (tab delimited), .cvs (comma delimited), .dat (fixed ASCII)
- Don't "Write variable names"

Fill In The Blanks
an Mplus - Mptert
File Edit View Mplus Graph Window Help

5 Mpteal
TITLE:
$\xrightarrow{\text { varitable }}$
-

## Variable List

NAMES ARE Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40 Q41 Q42 Q43 Q44 Q45 Q46 Q47 Q48 Q49 Q50 Q51 Q52 Q53 Q54 Q55 Q56 Q57 Q58 Q59 Q60 Q61 Q62 Q63 Q64 Q65 Q66 Q67 Q68 Q69 Q70 Q71 gen1 gen2 gen3 gen4 gen5 target1 target2 target3 target4 target5 age FTPT res greek gpa race hisp year athlete gender marry DrinkTyp DrinkHvy Probs PBS;

Double-Check


## Main Model

- Combining CFAs with Path Analyses


Model: ???

Fie Edit View Molus Groph Window Help


## putcomes;

DATA: tile 10 mpluas tullesu





target1 target2 target3 target 4 target5 age ETPT res
greek gpa mace hisp year athlete gender marry DrinkTyp
greek gpa race hisp year athiete gender marry Drink
DrinkHVy Probs pas;
USEVYartabres ars gen gen 2 gen 3 gen 4 gens target
USEVARIABLES ARE gen1 gen 2 gen 3 gen4 gens target1
target2 target3 target4 target5 DrinkTyp Probs PBS;
nopet:
ourpur: stand:|

	Model:	
		Mplus - Mplus
File Edit View Mplus Graph Window Help		
-	93	Mplus3_fullsem.inp
	TITLE: Running a full SEM example. All continuous outcomes;   DATA: file is mpluas fullsEM.csv:      Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25   Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q3         Q65 Q66 Q67 Q68 Q69 $270 \quad$ Q71 gen 1 gen 2 gen 3 gen 4 gen 5 target1 target2 target3 target4 target5 age ETPT res greek gpa race hisp year athlete gender marry DrinkTyp DrinkHyy Probs pBs;   usevartables are gen 1 gen 2 gen 3 gen 4 gen5 target 1 target2 target3 target4 target5 DrinkTyp Probs PBS; MODEL:   ourpur: stand:\|	
		159

## Main Model: Don't End Up With...

- USEVARIABLES are..



## Run It!



## Noncontinuous Variables

- CATEGORICAL ARE (or IS): names of binary and ordered categorical (ordinal) variables;
- NOMINAL ARE (or IS): names of unordered categorical (nominal) variables;
- COUNT ARE (or IS) : names of count variables;
- Poisson distribution models
- Zero-Inflated Poisson (ZIP) models




## But Wait!

- We cannot assume that indirect effects (the combined ab paths) are normally distributed)
- What do we do?
- Bootstrap!!
- Can delete Poisson code (bootstrap also corrects for non-normality)


## Run It!





Results						
8					mplus3_fullsemout	
	Extimate	s.と.	Esa./3.r.	$\begin{gathered} \text { Two-Tasled } \\ \text { E-Value } \end{gathered}$		
${ }^{71}{ }^{\text {arus }}{ }^{\text {BY }}$						
	1.000 1.319 0.348 1.859	0.000 0.145 0.095	999.000 9.028 10.218	930.000	Factor Loadings	
	0.846 1.533	0.093 0.136	10.214 11.247	0.000 0.000	Factor Loadings	
geks	${ }_{1.369}^{1.359}$	0.130	10.549	0.000		
12 Cmarri						
${ }_{\text {Thactiz }}^{\text {Thati }}$	${ }_{1}^{1.002}$	${ }^{0.000}$	93.000 21.201	999.000 0.000		
TMagri	1.06s	0.046	22.969	0.000		
tagatrs	(1.121	0.042 0.042	26.278 26.508	0.000 0.000		
pas on						
${ }_{8}^{12}$	6.496	0.181	0.708	0.479		
${ }^{2}$	11,801	4.364	2.624	8.009		
	-4,817	${ }^{1.130}$	-4.261	0.000		
12	1.189	0.515	2.509	0.021	Paths	
$\underbrace{\text { pasp }}_{\text {pramer }}$ on	0.000	0.006	-0.042	0.867		
pross om DRIarty	0.628	0.046	13.760	0.000		
${ }^{F 2} 2_{n 1}{ }^{W I T H}$	0.163	0.026	6.464	0.000		
Interoepts						173

## ANSWERS! Zero-Inflated Poisson



Results					
$\square$					mplus3.fulisem_countout
Ges4	${ }_{1}^{1.234}$	0.192 0.210	7.468 6.118	0.000 0.000	
$72 \quad 3 \mathrm{y}$					
${ }_{\text {TRaserti }}^{\text {Taseri }}$	${ }_{1}^{1.0009}$	0.000 0.062	999.000 16.091	999.000 0.000	
tagerts	${ }^{1.063}$	0.048	22.120	0.000	
${ }_{\text {Thaserf }}^{\text {Tancts }}$	1.113	0.066 0.069	16.965 16.251	0.000 0.000	
pas os					
${ }_{72}$	${ }^{7.488}$	${ }^{12} .519$	0.651	0.515	
72	11.282	4.394	2.545	0.011	
$\begin{array}{cc} \hline \text { sampryy } & \text { os } \\ 72 & \\ 72 \end{array}$	-3.057 1.508	$\begin{aligned} & 0.653 \\ & 0.312 \end{aligned}$	$\begin{array}{r} -4.663 \\ 4.840 \end{array}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	Paths from original model
$\begin{aligned} & \text { sangryent on } \\ & 72 \\ & 72 \\ & \hline \end{aligned}$	-0.457	$\begin{aligned} & 1.369 \\ & 0.982 \end{aligned}$	$\begin{array}{r} -0.334 \\ 0.987 \end{array}$	$\begin{aligned} & 0.739 \\ & 0.324 \end{aligned}$	New paths (\#1) identifying impact on likelihood of drinking at all (anything other than 0 ).
	0.000 0.043	$\begin{aligned} & 0.001 \\ & 0.005 \\ & \hline \hline \end{aligned}$	$\begin{array}{r} -0.116 \\ 8.564 \\ \hline \end{array}$	$\begin{aligned} & 0.908 \\ & 0.000 \\ & \hline \end{aligned}$	
	-0.001 -0.497	0.003 0.105	$\begin{aligned} & -0.272 \\ & -4.712 \end{aligned}$	$\begin{aligned} & 0.785 \\ & 0.000 \\ & \hline \end{aligned}$	
${ }^{72} \quad \text { wixn }$	0.195	0.045	4.336	0.000	175







## Thank You!!

World's Most Accurate Pie Chart


