Mplus: A Tutorial

Abby L. Braitman, Ph.D. Old Dominion University November 7, 2014 NOTE: Multigroup Analysis code was updated May 3, 2016

Contacting Me

• Handouts for this workshop series (and others)

 <u>https://sites.google.com/site/abbybraitman/home</u> /handouts

- abraitma@odu.edu
- MGB 132-B

Today

- Introduction to Mplus and basic functions
 - Intro:
 - Exporting data from SPSS
 - Code terminology
 - Reading output
 - Basics:
 - Path analyses
 - Latent variable modeling
 - Full SEM
 - Indirect effects (mediation)
 - Bootstrapping
 - Diagrammer
 - Troubleshooting

Today

- Intermediate functions
 - Latent growth modeling
 - Fixing and freeing paths
 - Non-continuous outcomes
 - Multilevel modeling
 - Other forms of estimation
 - Adding and relaxing equality constraints
 - LPA/LCA

Today

- Hands-on training
 - Sample dataset and suggested activities and models
 - Walk through an example together
 - I will give immediate hands-on training for those who are able to bring the software on their laptop
 - I will also provide ad hoc hands-on training for those who want help as they explore the software in their labs and offices for up to one week after the workshop ends

Why Mplus?

Wide choice of data estimators and algorithms

 It excels at handling categorical, nominal, binary, censored, and continuous non-normal data

- Several output options
- Beyond traditional SEM:
 - Multilevel modeling (longitudinal and cross-sectional, up to three levels of nesting)
 Mixture modeling (latent profiles, latent classes, growth mixture)
 - Mixture modeling (latent profiles, latent classes, growth mixture
 Simulation analyses (Monte Carlo)
 - Error messages are somewhat helpful (model is not identified versus need more iterations to reach convergence)
- Support: manual, website, Muthéns themselves
- New: Pictures!

.

- Helpful for double-checking yourself, and sharing with others

What You Need • The editor (a big, grey expanse) • The Users Guide (in Program Files by default) • Data

		•	ortin	g Y	our	Da	ta		
example1.sav (DataSet0) - IBM SPSS File Edit View Data Transf			hs Utilities Add	Fons Wir	idow <u>H</u> elp				
Den Database	orm Ana	iyos Grap	M		K Helb	42 🛄			6
Read Test Data									
	A-FA	63764	Lookin:	Mplus Wks	hp	-	18 G H	E	
		07320	4 Ge example	1.sav					
Save As	-	35230	4						
i Save All Data	2	37282							
Export to Database		11382							
Mark File Read Only		05963							
Rename Dataset		40733							
Display Data File Information		01303	-10	Keeping	9 of 9 variables	h			Variables
Cache Data		50556	File name:	example	1.sav				Save
-		36414	Save as tipe	SPSS N	distics (*.sav)				
		03769	1	SPSS 7					Paste
Switch Server		37815	4		2+ (°.5y5)				Cancel
Repository		94669	14	Portable		_			Help
Print Preview		23637	6		mited (*.dat)				
Print Ctr	rl+P	59764	1	Fixed AS	delimited (*.cs	147			
Recently Used Data		14121	8	Excel 2.1		_			
Recently Used Files		, 93180	- 805411	Excel 97	through 2003 ((*.xis)			*
Exit		76930		723880	- 180285	111837	271133	- 162098	
	TJOEN	29695	-10.499123	155868	-1.394741	- 897112	- 969746	-2.090380	10

Exporting Missing Data Missing data cannot be blank • 5, 7, 8, [.], 32 becomes 5, 7, 8, 32 X1 X2 X3 Drinks Age X1 X2 X3 Drinks . 🍎 32 7 5 7 5 8 8 32 • You need some sort of indicator (that is not a plausible value) • 5, 7, 8, 999, 32 becomes 5, 7, 8, [missing], 32 You must tell Mplus what your indicator is The language gets longer if you use different indicators for different variables, but it is possible

Exporting Your Data

- You may want to copy-paste your variable names from SPSS into Mplus when it's time to enter them
- If you accidentally omit one typing by hand, data will be mis-matched
- This is the time to shorten them if you haven't already: PROBLEMSt2 → PROBSt2

Semi-Colons and Exclamation Points

 Semi-colons are how you complete a command/item in mplus.
 Every statement must end with it.

19

• Exclamation Points are how you make notes to yourself (or inactivate code).

Double-Checking									
				example1.out					
RESULTS F	OR BASIC ANALYS	IS							
ESTI	MATED SAMPLE ST	TISTICS							
	Means								
	Y1	X1	X3						
1	0.485	0.001	-0.042						
-									
	Covariances								
	Y1	X1	X3						
¥1	2.408								
x1	1.078	1.094							
Х3	0.648	0.028	0.957						
	Correlations								
	Yl	X1	X3						
¥1	1.000								
X1	0.665	1.000		22					
X3	0.427	0.028	1.000	22					

		Dou	ble	-Cł	neckin	g		
1	Descriptive	Statistics						
	N	Mean	Std. De	viation	1			
y1	500	.48484627	1.5531	95733				
x1	500	.00128901	1.0467	63906				
х3	500	04216123	.9791	30863				
Valid N (listwise)	500							
			_		Corr	elations		
						y1	x1	x3
			y1		son Correlation	1	.665**	.427**
					riance	2.412	1.081	.650
				N		500	500	500
			x1		son Correlation	.665**	1	.028
					riance	1.081	1.096	.028
				N		500	500	500
			X3		son Correlation	.427**	.028	1
				Cova	riance	.650	.028	.959
				N		500	500	500

Reading Your Output							
1	health	belief.out					
INFUT READING TERMINATED NORMALLY							
this is an example of a basic path analysis							
with all continuous variables. Using the Health Belief Model though the data are	# - 1						
Using the Health Beller Model though the data are	Iake;						
SUMMARY OF ANALYSIS							
Number of groups	1						
Number of observations	500						
Number of dependent variables	2						
Number of independent variables	4						
Number of continuous latent variables	0						
Observed dependent variables							
Continuous							
INTENT PTHREAT							
Observed independent variables COSTBENR CUES2ACT SUSCEPT SEVERITY							
Estimator	ML	28					
Information matrix	OBSERVED	28					

Readir	ng Your	Outp	ut
			healthbelief.out
THE MODEL ESTIMATION TERMINATED N	ORMALLY		
MODEL FIT INFORMATION			
Number of Free Parameters	9		
Loglikelihood			
H0 Value	-2357.703		
H1 Value	-1568.616		
Information Criteria			
Akaike (AIC)	4733.407		
Bayesian (BIC)	4771.338		
Sample-Size Adjusted BI (n* = (n + 2) / 24)	C 4742.772		
Chi-Square Test of Model Fit			
Value	1578.175		
Degrees of Freedom	4		
P-Value	0.0000		
RMSEA (Root Mean Square Error Of)	Approximation)		
Estimate	0.887		
90 Percent C.I.	0.851	0.924	
Probability RMSEA <= .0	5 0.000		

Reading Your Output								
					healthbelief.or			
MODEL RESULTS	В	SE	t	p Two-Tailed				
	Estimate	S.E.	Est./S.E.	P-Value				
INTENT ON								
COSTBENR	-0.305	0.085	-3.585	0.000				
PTHREAT	0.883	0.047	18.861	0.000				
CUES2ACT	-0.557	0.166	-3.361	0.001				
PTHREAT ON								
SUSCEPT	3.656	0.144	25.380	0.000				
SEVERITY	2.163	0.143	15.074	0.000				
Intercepts								
INTENT	-1.515	0.092	-16.430	0.000				
PTHREAT	0.622	0.148	4.199	0.000				
Residual Varian	ces							
INTENT	3.896	0.246	15.811	0.000				
PTHREAT	10.970	0.694	15.811	0.000				
					30			

Reading Your Output									
					healthbelief.ou				
STANDARDIZED MOD	FI. RESULTS								
STDYX Standardiz	ation								
SIDIA Scandardiz	acton								
	Estimate		(0 F	Two-Tailed					
	Estimate	S.E.	Est./S.E.	P-Value					
INTENT ON									
COSTBENR	-0.248	0.064	-3.862	0.000					
PTHREAT	0.979	0.028	34.627	0.000					
CUES2ACT	-0.117	0.037	-3.200	0.001					
PTHREAT ON									
SUSCEPT	0.670	0.023	29.167	0.000					
SEVERITY	0.398	0.027	14.744	0.000					
Intercepts									
INTENT	-0.298	0.020	-15.002	0.000					
PTHREAT	0.110	0.026	4.172	0.000					
Residual Varian	ces								
INTENT	0.151	0.015	10.196	0.000					
PTHREAT	0.345	0.025	13.819	0.000					

	Reading Your Output									
					healthb	elief.out				
R-SQUARE										
Observed Variable	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value						
INTENT PTHREAT	0.849 0.655		57.390 26.185	0.000						
QUALITY OF NUMER: Condition No (ratio of CONFIDENCE INTER)	umber for th smallest to	largest eig		0.4	77E-02					
	Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5			
INTENT ON COSTBENR PTHREAT CUES2ACT	-0.524 0.762 -0.985	-0.471 0.791 -0.883	-0.445 0.806 -0.830	-0.305 0.883 -0.557	-0.165 0.960 -0.285	-0.138 0.975 -0.232	-0.086 1.003 -0.130			
PTHREAT ON SUSCEPT SEVERITY	3.285 1.793	3.374 1.882	3.419 1.927	3.656 2.163	3.893 2.399	3.939 2.444	4.027 2.533			
				-			32			

Full	SEM	Mod	els
MODEL FIT INFORMATION			
Number of Free Parameters	37		
Loglikelihood			
HO Value Hi Value	-4725.046 -4616.352		
Information Criteria			
Akaike (AIC) Bayesian (BIC) Sample-Size Adjusted BIC (n* = (n + 2) / 24)	9524.092 9668.083 9550.699		
Chi-Square Test of Model Fit			
Value Degrees of Freedom P-Value	217.388 62 0.0000		
RMSEA (Root Mean Square Error Of Appr	oximation)		
Estimate 90 Percent C.I. Probability RMSEA <= .05	0.083 0.071 0.000	0.095	
CFI/TLI			
CFI TLI	0.935		

	F	ull S	SEM	Mod	els
S SE	in an				
CODEL RESULTS					
	Estimate	S.E.	Est./S.E.	Two-Tailed F-Value	
F1 BY		1			
GEN1	1.000	0.000	999.000	999.000	
GEN2	1.311	0.145	9.021	0.000	 Factor
GENS	0.946	0.093	10.217	0.000	* Factor
GEN4	1.532	0.136	11.244	0.000	
GENS	1.369	0.130	10.546	0.000	Loadings
F2 BY	10.0000000				
TARGET1	1.000	0.000	999.000	999.000	
TARGET2	1.002	0.047	21.182	0.000	 Main Paths
TARGET3	1.067	0.046	23.003	0.000	
TARGET4	1.115	0.042	26.279	0.000	
TARGETS	1.111	0.042	26.550	0.000	
F2 ON		1			 Covariate
F1	0.942	0.126	7.455	0.000	• Covariate
DRINKTYP ON					B
F1	-4.652	1,133	-4,107	0,000	Paths
F2	1.151	0.509	2.260	0.024	1 acris
DRINKTYP ON		i			
AGE	-0.003	0.049	-0.065	0.948	
MARRY	-0.315	0.258	-1.221	0.222	
Intercepts					
GEN1	4.738	0.036	132.289	0.000	
GEN2	4.337	0.049	87.645	0.000	47

		Full	SEN	1 Mo	dels	
)						fu
						_
MODEL MO	DIFICATION INDI	CES				
Minimum	M.I. value for	printing the	modifica	tion index	10.000	
		M.I.	E.P.C.	Std E.P.C.	StdYX E.P.C.	
ON/BY St	atements					
TARGET1	ON F1 /					
Fl	BY TARGET1	10.246	-0.241	-0.102	-0.110	
ON State	ments					
F1	ON TARGET1	10.252	-0.256	-0.604	-0.562	
F2	ON TARGET1	10.277	0.812	0.974	0.906	
	ON GEN5	15.868	0.410	0.410	0.337	
GEN2	ON TARGET2	13.831	0.170	0.170	0.185	
GEN5	ON GEN2	15.867	0.185	0.185	0.226	
TARGET1	ON GEN4	14.424	-0.122	-0.122	-0.109	
	ON TARGET3	11.819		0.180	0.204	
TARGET2	ON GEN2	43.512	0.241	0.241	0.222	
TARGETS	ON TARGET1	11.812	0.333	0.333	0.295	
TARGET4	ON GEN4	14.800	0.135	0.135	0.109	
TARGET5	ON GEN5	14.237	0.138	0.138	0.105	
WITH Sta	tements					
GEN5	WITH GEN2	15.868	0.107	0.107	0.276	
TARGET1	WITH F1	10.246	-0.043	-0.102	-0.249	48

Using the Manual The first DSY statement specifies that f1 is measured by y1, y2, and y1. The metric of the factors is set automatically by the program by first point for the ford factors lay set automatically by the program by first point for the factors lay are estimated and the residuals are not correlated as the default the residuals variances of the factors are estimated as the default the residuals are not correlated by the program by first point of the residual variances of the factors are estimated as the default the residuals are not correlated by the program by first point of the residuals of the factors are estimated as the default the residuals of the factors are estimated as the default the residuals of the default the residual of the devolution of the observation of the observation of the devolution of the observation are used to select a different estimator. An explanation of the observation are found in EXAMPSION of point of the ANALYSIS correlation gractors are estimated and the ANALYSIS correlation gractors are correlated for latent variables that do not influence and the devolution of the observation of the obser

Mathematical Operators							
Symbol CODE	Definition	Example					
+	Addition	y + x;					
-	Subtraction	у – ж;					
*	Multiplication	y * x;					
/	Division	у / ж;					
**	Exponentiation	y**2;					
CODE	Definition	Alternate Symbol CODE					
EQ	Equal	==	CODE	Definition			
NE	Not Equal	/=	AND	logical and			
GE	Greater than or Equal to	>=	OR	logical or			
LE	Less than or Equal to	<=	NOT	logical not			
GT	Greater Than	>					
LT	Less Than	<			80		

Advanced Model Language

[intercept] versus not

- list of variables without brackets refers to variances and residual variances
 - example: f1 y1-y9;
 - f1@0; The variance of f1 is set to 0 Var. if exogenous; resid. var. if endogenou
- [list of variables] refers to means, intercepts, thresholds
 - example: [f1, y1-y9];
 - [f1]@0; The mean of f1 is set to 0 Mean if exogenous; intcpt if endogenous

Latent Growth Models

TITLE: this is an example of a linear growth model for a continuous outcome DATA: FILE IS ex6.10.dat; VARIABLE: NAMES ARE y11-y14 x1 x2 a31-a34; USEVARIABLES ARE y11-y14; MODEL: i s q | y1100 y1201 y1302 y1403;

- Added "q" for the quadratic term
- Assigned loadings for *linear* term
- Mplus knows to square loadings for "q"

						Two-Tailed	
			Estimate	S.E.	Est./S.E.	P-Value	
I		1					
	Y11		1.000	0.000	999.000	999.000	
	Y12		1.000	0.000	999.000	999.000	
	Y13		1.000	0.000	999.000	999.000	
	Y14		1.000	0.000	999.000	999.000	
s		1					
	Y11		0.000	0.000	999.000	999.000	
	Y12		1.000	0.000	999.000	999.000	
	¥13		2.000	0.000	999.000	999.000	
	¥14		3.000	0.000	999.000	999.000	
I		ON					
	X1		0.569	0.054	10.475	0.000	 Predictors' influence on
	X2		0.713	0.055	12,887	0.000	baseline values
	MOD		-0.110	0.055	-1.990	0.047	busenine values
s		ON					
	X1		0.262	0.025	10.393	0.000	 Predictors' influence on
	X2		0.474	0.026	18.436	0.000	growth slopes
	MOD		0.021	0.026	0.834	0.404	growth slopes
¥11		ON					
	A31		0.186	0.044	4.197	0.000	
¥12		ON					- Controlling for time-
	A32		0.323	0.038	8.447	0.000	specific covariates
¥13		ON					
	A33		0.344	0.038	8.982	0.000	(or main predictors)
¥14		ON					95
	A34		0.301	0.051	5,947	0.000	95

Multigroup Analysis Code

- Approach changed in newer versions •
- Version 6 and older
 - The "MODEL" describes the overall model to be estimated for each group Default is that ALL code under the "MODEL" command was constrained to
 equality across groups unless an exception was made
 - Exceptions were specified using "MODEL [group]" command after the overall
 - command
- Version 7 and newer
 - The "MODEL" describes the overall model to be estimated for each group
 - Default is for measurement to be constrained, but structure to be different
 - Factor loadings are held equal across groups
 Intercepts (for continuous variables) and thresholds (for categorical variables) are held equal across groups
 Paths such as ON and WITH are estimated separately for each group
 - Exceptions were specified using "MODEL [group]" command after the overall command

Multigroup Analyses							
MODEL R	ļ	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value		
F1	ВҮ					1	
¥1		1.000	0.000	999.000	999.000		
¥2 ¥3		1.016	0.021	48.830	0.000	Factor loadings	
¥3		0.644	0.026	24.837	0.000	-	
F2	BY						
¥4	51	1.000	0.000	999.000	999.000		
¥5		1.001	0.018	55.703	0.000		
¥6		1.007	0.018	54.562	0.000		
F2	ON					1	
F1		0.285	0.050	5.744	0.000		
						Predictive paths	
F1	ON						
X1		0.515	0.027	18,963	0.000		
X2 X3		0.598	0.032	18.596 15.863	0.000		
X3		0.719	0.045	15.863	0.000		
F2	ON						
X1		0.517	0.034	15.006	0.000		
X2		0.419	0.040	10.447	0.000		
X3		0.218	0.052	4.204	0.000		
						101	
Interc	epcs						

Multigroup Analyses							
Group F	EMALE						
F1	BY						
¥1		1.000	0.000	999.000	999.000		
¥2		1.016	0.021	48.830	0.000	Factor loadings	
Y3		0.644	0.026	24.837	0.000	(identical)	
F2	ВУ						
¥4		1.000	0.000	999.000	999.000		
¥5		1.001	0.018	55.703	0.000		
¥6		1.007	0.018	54.562	0.000		
F2	ON						
F1		0.404	0.055	7.385	0.000		
						Predictive paths	
F1	ON					(unique)	
X1		0.422	0.023	18,415	0.000	() () ()	
X2		0.572	0.027	20.841	0.000		
хз		0.615	0.037	16.510	0.000		
F2	ON						
X1		0.511	0.032	15.929	0.000		
X2		0.407	0.040	10.055	0.000		
Х3		0.256	0.049	5.268	0.000		
Interc	epts						
¥1		0.061	0.109	0.558	0.577	102	
¥2		0.036	0.110	0.330	0.741	102	

Can conduct likelihood ratio test (nested models)

N	1ultigr	ou	o An	alyse	es Cont'd
HODEL RESULTS	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	
F1 BY Y1 Y2 Y3	1.000 1.017 0.626	0.000 0.021 0.025	999.000 49.122 25.508	999.000 0.000 0.000	Factor loadings equal (like befor
F2 BY Y4 Y5 Y6	1.000	0.000 0.018 0.018	999.000 55.773 54.575	999.000 0.000 0.000	
F2 ON F1	0.329	0.037	8.994	0.000	ĺ
F1 ON X1 X2 X3	0.461 0.586 0.657	0.018 0.021 0.029	25.596 27.379 22.319	0.000 0.000 0.000	Predictive/structural paths
F2 ON X1 X2 X3	0.522 0.421 0.249	0.024 0.029 0.035	21.978 14.744 7.042	0.000	
Intercepts Y1 Y2 Y3	0.195 0.173 0.138	0.082 0.082 0.061	2.387 2.098 2.268	0.017 0.036 0.023	108

	Μ	ultigro	oup	Anal	yses	Cont'd
		-	-		-	
Group F	EMALE					
F1	ВУ					
¥1		1.000	0.000	999.000	999.000	
¥2		1.017	0.021	49.122	0.000	Factor loadings equal
¥3		0.626	0.025	25.508	0.000	
F2	BY					(like before)
12 Y4	DI	1.000	0.000	999.000	999.000	
¥5		0.999	0.018	55.773	0.000	
¥6		1.007	0.018	54.575	0.000	
F2	ON					
F1		0.329	0.037	8.994	0.000	
F1 X1	ON	0.461	0.018	25.596	0.000	
X1 X2		0.461	0.018	25.596	0.000	Predictive/structural paths
X3		0.556	0.021	22.319	0.000	now ALSO equal
		01007	0.015		0.000	now Abbo equal
F2	ON					
X1		0.522	0.024	21.978	0.000	
X2		0.421	0.029	14.744	0.000	
		0.249	0.035	7.042	0.000	
X3						
X3 Interc	epts					
	epts	0.195	0.082	2.387	0.017	
Interc	epta	0.195	0.082	2.387	0.017	
Interc Y1	epts					109

Noncontinuous Variables

- CATEGORICAL ARE (or IS): names of binary and ordered categorical (ordinal) variables;
- NOMINAL ARE (or IS): names of unordered categorical (nominal) variables;
- COUNT ARE (or IS): names of count variables;
 - Poisson distribution models
 - Zero-Inflated Poisson (ZIP) models

N	lonco	ntir	nuous	s Va	riables
fullsem_nominaly.out					
TARGET3 TARGET4 TARGET5	1.066 1,115 1,111	0.048 0.067 0.067	22.072 16.727 16.639	0.000	
F2 ON F1	0.942	0.154	6.110	0.000	
DRINKTYP ON F1 F2	-4.809 1.185	1.361 0.337	-3.534 3.514	0.000	Traditional structural paths
DRINKTYP ON AGE	-0.006	0.046	-0.124	0.901	
MARRY#1 ON DRINKTYP	0.353	0.060	5.894	0.000	Logistic structural paths
MARRY#2 ON DRINKTYP	0.336	0.024	14.258	0.000	For k classes, has k-1 estimate
MARRY#3 ON DRINKTYP	0.243	0.035	7.032	0.000	Reflect probability of being in current class versus final class
MARRY#4 ON DRINKTYP	0.275	0.064	4.266	0.000	given x
MARRY#5 CN DRINKTYP	0.309	0.025	12.404	0.000	Default is to use final class for comparison purposes
Intercepts GEN1 GEN2 GEN3	4.738 4.337 4.779	0.036 0.049	132.288 87.645 151.544	0.000	(may want to recode prior to analysis) 114

	Noncontinuous Variables										
TARGET4 TARGET5	1.116 1.124	0.068	16.503 15.931	0.000							
F2 ON F1	1.856	0.426	4.358	0.000	Traditional						
DRINKTYP ON					coefficients						
F1	-7.010	1.651	-4.246	0.000	(adjusted)						
F2	2.628	0.559	4.701	0.000							
DRINKTYP ON AGE	0.009	0.013	0.676	0.499							
Intercepts											
GEN1	4,738	0.036	132.315	0.000							
GEN2	4.337	0.049	87.647	0.000							
GEN3	4.779	0.032	151.592	0.000							
GEN4	4.586	0.044	105.039	0.000							
GEN5	4.630	0.041	113.954	0.000							
TARGET1	4.593	0.049	93.616	0.000							
TARGET2	4.436	0.054	82.281	0.000							
TARGET3	4.535	0.055	81.867	0.000							
TARGET4	4.499	0.054	82.837	0.000							
TARGET5	4.552	0.054	84.542	0.000							
DRINKTYP	0.778	0.157	4.953	0.000							
Variances					117						
E1	0.104	0.043	2.394	0.017							

No	oncon	tinud	ous Va	ariab	les
fullsem_zippoisson.out					1
F2 ON					
F1	1.281	0.217	5.893	0.000	
DRINKTYP ON					Traditional
F1	-3.048	0.647	-4.711	0.000	coefficients
F2	1.531	0.307	4.988	0.000	
DRINKTYP#1 ON					Additional <i>logit</i>
F1	-0.732	1.352	-0.541	0.588	
F2	1.245	0.987	1.261	0.207	coefficients
DRINKTYP ON					16 ab
AGE	-0.005	0.011	-0.483	0.629	If they are a
					drinker, how does
DRINKTYP#1 ON					age/f1/f2 impact
AGE -	-0.038	0.026	-1.455	0.146	how much they
Intercepts					drink?
GEN1	4.738	0.036	132,562	0.000	How does
GEN2	4.338	0.049	87.719	0.000	age/f1/f2 impact
GEN3	4.779	0.031	151.862	0.000	
GEN4	4.586	0.044	105.232	0.000	the probability of
GEN5	4.631	0.041	114.157	0.000	being a drinker (a
TARGET1	4.595	0.049	94.161	0.000	non-zero)? 119
TARGET2	4.437	0.054	82.631	0.000	1011-2010)!

Г

Noncontinuous Variables

- One exception to rule:
- LATENT VARIABLES may be nominal predictors
- Most common version of this...

120

Latent Profile/Class Analysis

- Mplus calls this "mixture modeling with crosssectional data" (chapter 7)
- Longitudinal version is often called Growth Mixture Modeling (chapter 8)
- Only covering cross-section data today (LPA/LCA), but same principles apply to longitudinal data (GMM)

	Latent Profile /Class Analysis <i>Relative</i> Entropy and class counts/proportions 						
Ipa_c3.out							
CLASSIFICATION	QUALITY						
Entropy		0.700					
Class Counts an		BASED ON THEIR	MOST LIKELY LATENT CLASS MEMBERSHIP				
Latent Classes							
1	36	0.07317	7.3% of sample in class 1				
2 3	338 118	0.68699 0.23984					

 Compare model fit across number of classes 								
Classes:	AIC	BIC	Adjusted BIC	Relative Entropy	LMR p	Proportion of smallest group		
1	3952.805	3994.790	3963.050					
2	3788.383	3855.559	3804.775	0.620	.0000	.341		
	3756.886	3849.253	3779.425	0.700	.0694	.091		
4	3736.655	3854.213	3765.341	0.754	.1910	.012	Γ.	
5	3722.782	3865.530	3757.614	0.773	.1497	.013	Grou with	
	3715.194	3883.134	3756.174	0.753	.7717	.012	ptn <	
7	3703.795	3896.925	3750.921	0.766	.7638	.011		

Latent **Profile**/Class Analysis

ricu	cuonn	counto			
pa_c3_qtyp.out					
ODEL RESULTS					
	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	
QTYP ON					Dummy coding:
CLASS1	2.110	1.863	1.133	0.257	B = average number of drink
CLASS3	-2.701	1.068	-2.528	0.011	
SEX	4.157	1.249	3.327	0.001	increase/decrease compare
Intercepts					to class 2
QTYP	5.244	0.601	8.685	0.000	
Residual Varian	cea				
QTYP	106.851	19.453	5.493	0.000	
					Remember, dummy coding is
TANDARDIZED MOD	FT. DESULTS				one of the cases where we
THEOREM LEVE INC.			1		
	StdYX	StdY	Std		only want to standardize Y,
	Estimate	Estimate	Estimate		because now β represents
OTYP ON					the standardized increase fo
QTYP ON CLASS1	0.052	0.198	2,110		
CLASS3	-0.106	-0.254	-2.701		one class versus another
SEX	0.186	0.391	4.157		(x=0 versus x=1)
					(133
Intercepts					

Laten	nalysis	
Ica.out	•	
MODEL FIT INFORMATION		
Number of Free Parameters	9	
Loglikelihood		Model Fit
HO Value HO Scaling Correct for MLR	-965.244 tion Factor 1.013	
Information Criteria		
Akaike (AIC) Bayesian (BIC) Sample-Size Adjus (n* = (n + 2) /	ted BIC 1957.853	
Entropy	0.904	
CLASSIFICATION OF INDIVIDUA	LS BASED ON THEIR MOST LIKELY LATENT CLASS	MEMBERSHIP
Class Counts and Proportion	3	Entropy
Latent Classes		and proportions
1 127 2 373	0.25400 0.74600	

Late	ent P	rofil	e/	Cla	ss A	naly	'sis	
RESULTS IN PROBABI	LITY SCALE							
Latent Class 1								
parene crapp 1						Probab	ninty of	
U1						memb	ership foi	r each
Category 1	0,113	0.037	3.0	025	0.002			
Category 2	0.887	0.037	23.	799	0.000	indicat	or by clas	SS
U2								
Category 1	0.151	0.038	3.5	934	0.000			
Category 2	0.849	0.038	22.0	056	0.000			
U3					u1	u2	u3	u4
Category 1	0.911	0.031	28.			u2		u4
Category 2	0.089	0.031	2.	-				
U4			28.	Class 1	no	no	yes	yes
Category 1 Category 2	0.889	0.032	28.					
Category 2	0.111	0.032	3.	Class 2	yes	yes	no	no
Latent Class 2								
01								
Category 1	0.890	0.018	50.0	016	0.000			
Category 2	0.110	0.018	6.3	181	0.000	Lo-Mei	ndell-Rub	bin
U2						adjuste	dIRT	
Category 1	0.887	0.018	48.8		0.000			
Category 2	0.113	0.018	6.3	256	0.000	availab	le, but	
UB	1000000	1000	1000	100	1000	omitto	d for spa	c0
Category 1	0.101	0.018	5.4		0.000	Unitte	u iui spa	LE
Category 2	0.899	0.018	48.7	118	0.000			
Category 1	0,126	0.020	6.3	267	0.000			
Category 2	0.874	0.020	43.4		0.000			136

Multilevel Modeling

- Other than LGMs (with matching timepoints), multilevel modeling is impossible in most SEM software packages
- Can use HLM (software by SSI)
 - Limited functionality beyond HLM
 - No bootstrapping
 - No path analyses where outcomes are also predictors (e.g., mediation)
- Can use SAS, MIXOR, MLWIN, VARCL, BUGS, or R, but need to learn another language

Multilevel Modeling

Level 1:

Level 2:

 $Drinks_{ti} = \pi_{0i} + \pi_{1i}(Bar_{ti}) + \pi_{2i}(Rest_{ti}) + \pi_{3i}(Party_{ti}) + \pi_{4i}(Other_{ti}) + \pi_{5i}(PBS_{ti}) + e_{ti}$ Level 1: Drinks for person *i* at time *t* depends on: their personal

intercept, plus where they drank that day (dummy coded across 4 variables), plus their PBS that day, plus random error $\pi_{0i} = \beta_{00} + \beta_{01}(Gender_i) + r_{0i}$

 $\pi_{1i}=\beta_{10}$, $\pi_{2i} = \beta_{20}$,

Level 2: A person's personal intercept depends on: their gender. $\pi_{3i}=\beta_{30}\;,$

140

142

The effect of location does not vary by gender $\pi_{4i}=\beta_{40}$, The influence of PBS does not vary by gender.

 $\pi_{5i} = \beta_{50}$

139

Multilevel Modeling in Mplus

• Code relevant to both:

TYPE=COMPLEX & TYPE=TWOLEVEL RANDOM

- CLUSTER = name of grouping variable;
- CENTERING IS GRANDMEAN (variable names);
- GROUPMEAN (variable names);
- **TYPE = TWOLEVEL RANDOM** code only
 - WITHIN ARE names of level-1 observed variables;
 - BETWEEN ARE names of level-2 observed variables;

	Multilevel Modeling	g:
	TWOLEVEL RANDON	1
🗄 HLM_nob	oot.inp	
DATA:	Mplus multilevel mediation for daily drinking with FBS (daily) as mediator. Place Context and FBS as predictors. Drinks as outcome. No mediation yet to replicate HLM findings; FILE is DailyLimplus.cov; E: Names are SONA WeekID Home Bar Rest Party Other Alone Friend Fam OPlace drinks pheplan pbado pheall time Weekend age gendD raceD greekD resido marryD; USFVariables are Home Bar Rest Party Other drinks phedo gendD;	Note "drinks" is not
ANALYSI MODEL:	<pre>WITHIN = Home Bar Rest Party Other; BETWEEN = qend); CLUSTER = SONA; CENTERING = GRANDMEAN (pbsdo); S: TYPE = THOLEVEL RANDOM; \$WITHIN\$</pre>	under WITHIN or BETWEEN. Outcome does not need to be specified by level.
!Output	drinks ON Home Bar Rest Party Other PBSdo; *BETWEEN* drinks ON gendD; stand:	143

Multilevel Modeling:								
				Two-Tailed				
	Estimate	S.E.	Est./S.E.					
Within Level								
DRINKS ON								
HOME	0.926	0.359	2.583	0.010				
BAR	1.800	0.458	3.928	0.000				
REST	0.018	0.396	0.047	0.963				
PARTY	3.279	0.368	8.908	0.000				
OTHER	2.038	0.559	3.645	0.000				
PBSDO	-0.136	0.092	-1.480	0.139				
Residual Varianc	23							
DRINKS	9.047	1.041	8.693	0.000				
Between Level								
DRINKS ON								
GENDD	1.823	0.447	4.081	0.000				
Intercepts								
DRINKS	1.637	0.424	3.863	0.000				
Residual Variance	ea 5,601	0.983	5,697	0.000		1		

Multilevel Modeling: COMPLEX
HLM_TYPEcomplex.inp
<pre>TITLE: Mplus multilevel mediation for daily drinking</pre>
CENTERING = GRANDMEAN (pbsdo); ANALYSIS: TYPE = COMPLEX;
MODEL:
Drinks ON Home Bar Rest Party Other pbsdo; Drinks ON gendD;
!Output: stand;
1

	Mult	tilev	el Mo	odeling:							
	COMPLEX										
I hlm_typecomplex.out	him_typecomplex.out										
MODEL RESULTS											
	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value							
DRINKS ON											
HOME	1,427	0.496	2.880	0.004							
BAR	2,422	0.609	3,977								
REST	-0.537	0.481	-1.116	0.265							
PARTY	3.654	0.457	7.994	0.000							
OTHER	2.436	0.615	3.959	0.000							
PBSDO	-0.184	0.089	-2.073	0.038							
GENDD	1.745	0.449	3.887	0.000							
Intercepts											
DRINKS	1.505	0.533	2.823	0.005							
Residual Varian	ces										
DRINKS	14.300	1.321	10.829	0.000							
QUALITY OF NUMER	ICAL RESULTS										
	umber for the I smallest to la			0.170E-01							
	ime: 17:57:40				146						

Data

- Mplus3_fullSEM.sav
- No missing data
- Convert to Mplus-compatible file
 - Save as
 - .dat (tab delimited), .cvs (comma delimited), .dat (fixed ASCII)
 - Don't "Write variable names"

plus - Mplus3_fullSEM.ir Edit View Mplus	Graph Window Help		
🛎 🖬 X 🖻 🛍	5 11 12 12 12 12 12 12 1		
//plus3_fullSEM.inp	full SEM example. Al		
VARIABLE: NAMES Q13 Q14 Q15 Q16 Q26 Q27 Q28 Q29 Q39 Q40 Q41 Q42 Q52 Q53 Q54 Q55 Q65 Q66 Q67 Q68 target1 target2		2 Q23 Q24 Q25 5 Q36 Q37 Q38 8 Q49 Q50 Q51 1 Q62 Q63 Q64 gen3 gen4 gen5 5 age FIPT res	

Double-Check									
3_fullsem	out								
	Neans								
	TARGET2	TARGET3	TARGET4	TARGET5	AGE				
1	1.136	4.536	4.500	4.552	6.249				
	Means FIPT	RES	GREEK	GPA	RACE				
1	1.141	2.948			2.583				
1		2.940	1.115	2.761	2.003				
	Means HISP	YEAR	ATHLETE	GENDER	MARRY				
1	0.075	2.693	0.044	0.293	2.146				
	Means								
	DRINKTYP		PROBS	PBS					
1	5.517	10.640	6.622	93.796					
	Covariances Q3	04	Q5	Q6	07				

Model: ???	
5	Мр
File Edit View Mplus Graph Window Help	
· 『聞聞』を見える「『「「」」、	
	Mplus3_LatentGrowth.it
TITLE: Numing latent growth model example. All continuous outcomes: DATA: file is mplus5 fullSEM.cov; VARTABLE: NAMES ARE 05 06 07 08 09 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 013 022 033 044 053 036 037 038 029 040 041 042 043 044 045 046 047 048 049 050 051 052 033 054 055 056 057 058 059 060 021 027 058 064 065 066 067 068 068 070 071 geni gen2 gen3 gen4 gen5 target1 target2 target4 target5 agerTFT res greek opm race hip year athlete gender marry DrinkTyp DrinkTyp Trobs PBS; USEVARIABLES ARE 066 067 068 athlete gender; MODEL: OUTPUT: stand;	
	169

			Res	ults	
					mplus3_fullsem.out
	Estimate	5.E.	Est./S.E.	Two-Tailed P-Value	
F1 BY					
GEN1	1.000	0.000	999.000	999.000	
GEN2	1.313	0.145	9.028	0.000	Factor Loadings
GEN3	0.946	0.093	10.214	0.000	Factor Loadings
GEN4	1.533	0.136	11.247	0.000	
GENS	1.369	0.130	10.549	0.000	
F2 BX					
TARGET1	1.000	0.000	999.000	999.000	
TARGET2	1.002	0.047	21.201	0.000	
TARGET3	1.065	0.046	22.969	0.000	
TARGET4	1.115	0.042	26.278	0.000	
TARGET5	1.111	0.042	26.588	0.000	
PBS ON					
81	6.496	9.181	0.708	0.479	
82	11.501	4.384	2.624	0.009	
DRINKTYP ON					
27	-4.817	1.130	-4.261	0.000	
F2	1.189	0.515	2.309	0.021	Paths
DRINKTYP ON					
PBS	0.000	0.006	-0.042	0.967	
PROBS ON					
DRINKTYP	0.628	0.046	13.760	0.000	
F2 WITH	10-10 (10-10-10-10-10-10-10-10-10-10-10-10-10-1		100000000000		
F1	0.169	0.026	6.484	0.000	
Intercepts					17
GEN1	4,738	0.036	132.289	0.000	

ANSWERS! Zei	ro-Inflated Poisson
	Mplus3_fullSEM_count.inp
TITLE: kunning a full SEM example. Al outcomery DATA: file is mplusj fullSEM.cosy VARIABL: NAMES ARE 20 40 50 60 70 80 (13 04 015 016 017 018 019 020 221 02) 20 627 028 029 030 0192 033 034 031 029 040 041 042 045 046 047 046 042 033 044 055 046 07 058 059 046 047 042 053 044 055 046 07 058 059 046 047 042 053 044 055 046 07 058 059 046 047 042 053 044 055 046 077 058 059 046 047 042 053 047 045 045 047 058 059 046 047 042 045	29 Q10 Q11 Q12 2 Q23 Q24 Q25 5 Q36 Q37 Q38 8 Q49 Q50 Q51 1 Q62 Q63 Q64 gen3 gen4 gen5 5 age TFPT res r marry DrinkTyp men5 target1 yp Probs FBS;
DrinkTyp ON PBS f1 f2; Probs ON DrinkTyp; DrinkTyp#1 ON PBS f1 f2; Probs#1 ON DrinkTyp;	Remember "(i)" means zero-inflated, and is associated with the DV#1 code.
OUTPUT: stand;	Can omit for regular Poisson distributions.
	174

			Res	ults	
					mplus3_fullsem_count.out
GEN4 GEN5	1.434	0.192 0.210	7.468 6.118	0.000	
F2 BY TARGET1 TARGET2 TARGET3 TARGET4 TARGET5	1.000 1.003 1.063 1.113 1.124	0.000 0.062 0.048 0.066 0.069	999.000 16.091 22.120 16.965 16.251	999.000 0.000 0.000 0.000 0.000	
PBS ON F1 F2	7.488	11.510 4.394	0.651 2.545	0.515	
DRINKTYP ON F1 F2	-3.057 1.508	0.653	-4.683 4.840	0.000	Paths from original model
DRINKTYP#1 ON F1 F2	-0.457 0.970	1.369 0.982	-0.334 0.987	0.739 0.324	New paths (#1) identifying impac on likelihood of drinking at all (anything other than 0).
DRINKTYP ON PBS	0.000	0.001	-0.116	0.908	(anything other than o).
PROBS ON DRINKTYP	0.043	0.005	8.564	0.000	
DRINKIYP#1 ON PBS	-0.001	0.003	-0.272	0.785	
PROBS#1 ON DRINKTYP	-0.497	0.105	-1.712	0.000	
F2 WITH	0.195	0.045	4.336	0.000	175

ANSWERS!
Bootstrapping and Indirect Effects
Mplus3_fullSEM_bootIND.inp
TITLE: Numing a full SEM example. All continuous outcomes: DATA: file is mpluss_fullSEM.csv: VARIALE: NAMES ARE 06 40 60 60 70 80 90 10 01 012 013 014 015 016 017 018 019 020 021 022 021 024 025 026 027 020 020 010 010 013 020 04 026 026 028 025 026 027 026 026 010 010 023 024 026 026 028 025 026 027 026 026 010 010 023 024 026 026 028 025 026 027 026 026 010 010 021 024 024 025 025 026 027 026 026 010 011 021 022 021 024 025 025 026 027 026 026 010 011 021 022 021 025 026 027 027 026 026 010 011 021 022 021 025 026 027 027 026 026 010 011 021 022 021 025 026 027 027 026 026 010 011 021 026 025 027 027 027 026 026 010 011 021 026 025 027 027 027 027 026 026 010 011 021 026 027 027 027 027 027 027 027 027 027 027
176

ffects from El Lo	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	
Sum of indirect		0.107	-0.031	0.975	Combined impact of both
Specific indirect					
DRINKTYP PBS F1	-0.002	0.053	-0.031	0.975	Estimates of each individual
DRINKTYP PBS					indirect effect
F1	-0.002	0.053	-0.031	0.975	

						m_bootind.out	
ONFIDENCE INTERV	ALS OF TOTA	L, TOTAL INDI	RECT, SPECIE	IC INDIRECT,	AND DIRECT	EFFECTS	
	Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5%
ffects from F1 t	O DRINKTYP						
Sum of indirect	-0.441	-0.273	-0.198	-0.003	0.136	0.190	0.358
Specific indire	ct						
DRINKTYP							
F1	-0.221	-0.136	-0,099	-0.002	0.068	0.095	0.179
DRINKTYP PBS							
Fl	-0.221	-0.136	-0.099	-0.002	0.068	0.095	0.179
ONFIDENCE INTERV ND DIRECT EFFECT		DARDIZED TOTA	L, TOTAL INT	DIRECT, SPECI	FIC INDIREC	τ,	•
TDYX Standardiza	tion						
	Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5%
ffects from F1 t	O DRINKTYP						

Results						
					mplus3_latentgrowth.out	
	Estimate	5.E.	Est./S.E.	Two-Tailed P-Value		
I						
Q66	1.000	0.000	999.000	999.000		
Q67	1.000	0.000	999.000	999.000	Loadings	
Q68	1.000	0.000	999.000	999.000		
5 1						
Q66	0.000	0.000	999.000	999.000		
Q67	1.000	0.000	999.000	999.000		
Q68	2.000	0,000	999.000	999.000		
I ON	21-22 (10-0-2-	and the second		Second States	Influence of gender and athleti	
ATHLETE	-0.246	0.840	-0.293	0.769		
GENDER	-0.165	0.380	-0,433	0.665	status on baseline levels (i) and	
5 ON				20000000	linear growth over time (s)	
ATHLETE	-0.486	0.508	-0.956	0.339	· · · · ·	
GENDER	-0.410	0.230	-1.782	0.075		
5 WITH						
I	0.938	0.556	1.687	0.092		
Intercepts						
Q66	0.000	0.000	999.000	999.000		
Q67	0.000	0.000	999.000	999.000		
Q68	0.000	0.000	999.000	999.000	Baseline levels for female non-	
I	3,315	0.206	16.061	0.000	athletes (i) and their growth	
5	0.835	0.125	6.683	0.000		
Residual Variance					over time (s)	
Q66	6,003	1.040	5.771	0.000		
Q67	5.537	0.636	8.711	0.000		
Q68	1,615	1.287	1.256	0.209	18	
T	5.876	1.034	5.680	0.000	18	
	0.010	11004	0.000	0.000		

