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There are at least eight known approaches for 

teaching mathematics that have been described in the 

literature. These include the Integrated-

Environmentalist, Formative, Social-Constructivist, 

Structuralist, New Maths, Problem Solving, Cultural, 

and Behaviorist approaches (Neyland, 1995). This 

paper presents some examples for teaching mathe-

matics using the Integrated-Environmentalist ap-

proach, which is based on the assumption that the 

content knowledge in mathematics cannot be separat-

ed from the meaningful context from which it is tak-

en, and in which it can be explained.  In this approach 

for teaching mathematics the environment is used as 

the main source of mathematical meaning, stimula-

tion to do creative work in mathematics, and is the 

base for the abstraction process.  

Difference equations. 

A difference equation is a mathematical equality 

involving the differences between successive values 

of a function of a discrete variable. Thus, a popula-

tion of antelope xn in a given year may depend on the 

population value in the previous year (xn-1), or in 

functional notation, xn = f (xn-1). As an example, if the 

population doubles every year, then xn = 2xn-1. By in-

troducing the student to the most general form of a 

first order linear difference equations (for which f is a 

linear function), and the second order Fibonacci dif-

ference equation, the student can see applications of 

algebraic ideas to problems in the life sciences. In the 

process, students are exposed to arithmetic and geo-

metric sequences and series, the solution of exponen-

tial and quadratic equations, the solution of simulta-

neous algebraic equations, and the derivation of the 

formula for the nth Fibonacci numbers. 

Difference equations are useful in many life sci-

ence related contexts such as population growth or 

decline and pharmokinetics (e.g. drug dosage levels) 

to name but two. For more information see Chapter 5 

of the book by Bodine et al., (2014). Difference equa-

tions model population or drug concentrations, xn, at 

different discrete times, n, to analyze measurements 

that cannot be continuously recorded. Difference 

equations should not be confused with differential 

equations; Difference equations are much easier to 

solve, and are valuable for students in algebra, espe-

cially when the students are introduced to arithmetic 

and geometric series, quadratic equations,  and expo-

nential equations. 

In terms of mathematics teaching, this article falls 

into the category of Integrated-Environmentalist, that 

is, it is seamlessly connected to the context in which 

this mathematical model arises. In this paper the gen-

eral solution of a linear first order difference equation 

is explained first, followed by real world examples.  

General solution of a linear first order 

(inhomogeneous) difference equation. 

Here we will examine the difference equation in the 

following way. Given the difference equation  

xn+1 = axn + b,  (1) for positive integer values of n, 

then the solution is given by 

where x0 is the initial population, and a > 0 and b are 

constants (b can be of either sign or zero). Equation 

(1) connects the population at one time period to the 

immediately preceding one in terms of the parameters 

a and b for any given problem. This solution (2) may 

be proved using the induction method, direct substitu-

tion, or direct construction. The latter will be present-
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ed here. From equation (1), since xn=axn-1+b, and  

xn-1=axn-2+b, it follows that  

continuing this process leads to the general result 

Notice when a ≠ 1, the sum of the geometric series, 

results in 

which is equivalent to equation (2). If a=1 in equation 

(3), then the result for the arithmetic sequence is ob-

tained, namely  xn=x0+nb. Let’s put the result from 

equation (2) to use in the example below. The an-

swers are embedded in the problem and the constant 

term b is positive, if the population is increased by b 

for each time period. It is negative if the population is 

harvested, culled or poached. 

Example 1.  

A population of spiny anteaters is growing at 2% 

per year, the initial population is 600 (exactly!). A 

group of middle school students is poaching them at a 

rate of 5 per year. Using the governing difference 

equation below, we will find the answers to questions 

a though c. We will round to the nearest appropriate 

integer in each case. 

(a) How many anteaters are there after 10 years? 

x10 = 350 (1.02)10 + 250 ≈ 677. 

(b) After how many years will the population double?

1200 = 350 (1.02)n + 250, so we need to solve this for 

n to find the number of years. 

Since after 50 years the population will be slight-

ly less than 1200 according to this model, we have 

the option of choosing 51 years. It doesn’t matter 

what base logarithms are used to solve this problem. 

(c) What should the poaching rate be to maintain a 

population of 600 each year? This is essentially a 

“fixed point” problem, when we want to find b in 

equation (1), when  

x0 = ax0 + b, or x0 = 600 = 600 (1.02) + b.  

Solving for b, b = 12.  

This means, in order to maintain the initial popu-

lation, the poaching rate must be increased to 12 

spiny anteaters per year. 

Figure 1. Exponential population growth, 12% a year 

In Figure 1, the discrete population xn (x(n) in the 

Figure), relative to the initial population of 600) is 

presented for a slightly different problem: a popula-

tion growth rate of 12% per year is shown instead of 

the 2% because the exponential-type growth of the 

population is easier to see – whereas for a 2% growth 

rate is appears to be nearly linear initially. The dotted 

line in the graph represents the continuous version of 

the solution, that is, xn = 350 (1.12)n + 250. 

Example 2: Pharmokinetics.  

We will develop a difference equation mathemat-

ical model for the level Dn of medication in the 

bloodstream, and find the answers to the following 

questions: 

(a) The drug dosage for a patient taking a certain 

statin is 10 mg/day. If the kidneys remove 60% of the 

drug every 24 hours, what is the maintenance level L 

for the medication? 

If the kidneys remove a fixed proportion (1–a) of 

the medication from the bloodstream, then the gov-

erning difference equation is Dn+1 = aDn+D0, if D0 is 
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the repeated dosage every time period. Then with b = 

D0 in equation (2), the solution equation is:  

When 0 < a < 1 in problems of this kind, it is evident 

that 

and this is called the maintenance level. For this 

problem, L = 10 / 0.6, which is approximately 16.7 

mg. 

(b) If the daily dosage was halved (or doubled), is the 

maintenance level halved (or doubled)? The answer is 

yes to both questions. 

(c) Suppose the patient decides to double the dosage 

period and double the dosage as a way to compensate 

for less frequent dosage. How does this affect the 

maintenance level, if at all? Since 40% of the drug re-

mains in the body after 24 hours, only 16% [(0.4)2= 

0.16] remains after 48 hours. This implies, 1–a=0.84 

and L = 20/0.84, which is approximately 23.8 mg. 

This could be very dangerous for the patient. 

In Figure 2, the level of medication Dn, 

(D (n) in the Figure 2) is shown. As in the previous 

example the curved dotted line represents the contin-

uous version of the solution. The horizontal asymp-

tote (dotted line) represents the maintenance level  

L ≈ 16.7 mg. 

Phyllotaxis and the Fibonacci Difference Equation 

Phyllotaxis is the distribution or arrangement of 

leaves on a stem and the mechanisms which govern 

it. The term is used by botanists and mathematicians 

to describe the repetitive arrangement of more than 

just leaves; petals, seeds, florets and branches also 

Figure 2. Level of medication, D(n), with maintenance lev. L 

have repetitive arrangements. These arrangements are 

related to the Fibonacci number sequence, 1, 1, 2, 3, 

5, 8, 13, 21, 34, 55, 89,... and to the golden number or 

ratio Ф = (1+√5)/2 ≈ 1.618034. Sometimes, the recip-

rocal of Ф, Ф–¹, which is approximately equal to  

0.618034, is referred to as the golden ratio. Numeri-

cal and geometric patterns based on these numbers 

abound in nature, and have been studied for hundreds 

of years. For that reason, the basic features of phyllo-

taxis are found in many elementary mathematics or 

science textbooks. The Fibonacci sequence is derived 

from a second order linear difference equation. This 

means the subscripts differ by two instead of one 

shown in the previous first order example. Instead of 

using xn, we use Fn for the nth term in the sequence. 

Thus, given the Fibonacci difference equation Fn+2 = 

Fn+1 + Fn, n =1, 2,…, and with F1 = 1, and F2 = 1, the 

sequence generated is  1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 

89, 144, … The question naturally arises, how do we 

compute a particular number such as the 30th Fibo-

nacci number? There is an explicit formula, called the 

Binet formula, which is easily derived using the 

quadratic equation formula and algebra. In the deriva-

tion below the above sequence will be amended to 

start with zero, which satisfies the difference equation 

requirement for ease of computation. 

We return temporarily to the solution (2) for the 

first order difference equation. In the equation, when 

b = 0, the corresponding solution is of the form,  

Fn = Aan, where A is a constant. If we place this into  

Fn+2=Fn+1+Fn we obtain Aan(a2–a–1)=0 

 which implies a2–a–1=0. This implies, 
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where a1 ≈ 1.618 and a 2 ≈ – 0.618. There are two 

distinct roots for a, so we seek the general solution 

for Fn , when Fn = Aa1
n + Ba2

n. Thus, when  n = 0,  

Aa1
0 + Ba2

0 = 0 which implies A + B = 0 . When   

n = 1,  Aa1
1 + Ba2

1 = 1 which implies  Aa1 + Ba2 = 1. 

This implies   

which gives us  

for large enough n. The sequence effectively grows 

exponentially. Thus, to answer our original questions, 

we substitute 30 in for n and solve.  

Notice that the term in the second parenthesis is ap-

proximately -0.618, which rapidly diminishes in mag-

nitude as n increases. It is left to the reader to find the 

95th Fibonacci number. 

In Figure 3 the first ten Fibonacci numbers are 

represented graphically as F(n), along with the ap-

proximation of 

shown by the dotted curve. As can be seen, this is a 

very accurate approximation even for a small integer 

value for n. 

Figure 3. Graph of the Fibonacci sequence  

Connection between the Fibonacci & Phyllotaxis? 

We can examine some flower petals as examples 

of this phenomenon. Lilies have 3 petals , buttercups 

have 5, some delphiniums have 8 petals, marigolds 

have 13, asters have 21, and daisies have 34, 55 or 

even 89 petals. Exceptions do occur quite often: as 

explained by the geometer H.S.M. Coxeter, in his 

book, Introduction to Geometry. He states "... phyllo-

taxis is really not a universal law but only a fascinat-

ingly prevalent tendency." Plants in general face pre-

dicaments shared by humans such as how to occupy 

space, receive sunlight and interact with the environ-

ment in an optimal fashion. As a branch on a plant 

grows upward, it produces leaves at regular angular 

intervals which branch out from the stem. If these an-

gular intervals are exact rational multiples of 360°, 

then the leaves will grow directly above one another 

in a set of rays, when viewed from above. This pat-

tern shades lower leaves from sunlight and moisture 

to some extent. Consider the shading patterns when 

leaves sprout at every 180° (1/2 revolution) or 90° 

(1/4 revolution). In many cases, plants use rational 

approximations to the golden number Ф in order to 

optimize leaf arrangement. In fact, depending on the 

plant, leaves may be generated after approximately 

2/5 of a revolution of a circle, (for oak, cherry, apple, 

holly and plum trees), 1/2 (elm, some grasses, lime, 

linden), 1/3 (beech, hazel), 3/8 (poplar, rose, pear, 

willow) and 5/13 (almond). Other approximations in-

clude 3/5, 8/13, 5/13…, which are called phyllotactic 

ratios, and their numerators and denominators are 

each Fibonacci numbers, although not always consec-
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utive ones. Many other examples are described in the  

book by Garland, Fascinating Fibonaccis. For more 

mathematical aspects of phyllotaxis  with a connec-

tion to the Euclidean algorithm, consult Naylor 

(2002).  

Conclusion 

Introducing students to the most general form of 

first order linear difference equations, and the second 

order Fibonacci difference equation, allows them to 

see applications to the life sciences. Mathematically, 

students are exposed to arithmetic and geometric se-

quences and series, the solution of exponential and 

quadratic equations, the solution of simultaneous al-

gebraic equations that leads to the derivation of Bi-

net’s formula for the nth Fibonacci numbers. As a re-

sult, students have a mathematically rich experience 

that is grounded in their environment.  
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