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 “Adam, astronomers, even observational 

ones, need to know an awful lot of mathematics, 

and you are very near the bottom of the class in al-

gebra,” said Mr. Archibald Chanter, an Algebra 

teacher at Henley-on-Thames Grammar School, 

circa 1962 (Adam, 2006). 

 “Algebra has often been referred to as a 

‘gatekeeper’ to higher learning—both in mathemat-

ics and in other fields. Research shows that stu-

dents who complete a mathematics 

course beyond the level of Algebra 2 

are more than twice as likely to pur-

sue and complete a postsecondary 

degree. Students who don’t do well 

in algebra compromise their career 

options, especially in STEM 

fields” (Gojak, 2013). 

 In this article, I present an 

important topic in algebra – the solu-

tion of a system of linear equations – 

in the context of science: more spe-

cifically, physics, astronomy and bi-

ology (see Pennycuick (1992) for 

more details in the latter subject ar-

ea). By solving such systems in two 

or three variables, students can de-

velop physical intuition by asking 

what do the solutions mean in the 

context of the topic. To do this, the 

concept of everyday physical dimen-

sions – speed, length, mass, time, ac-

celeration, etc. – is reduced to com-

binations of fundamental ‘units,’ 

namely mass [M], length [L], and time [T]. This 

enables students to relate mathematical consistency 

in equations with dimensional consistency, and in 

so doing enables students to see profound connec-

tions between the mathematics and the context to 

which it applies. 

 When we write down an equation, for ex-

ample y = f (x), what are we really claiming? Obvi-

ously, we mean that the left-hand side and right-

hand side are equal; otherwise, it is not an equa-

tion. However, when such an equation appears in a 

context, there is more to say. The physical dimen-

sions of both sides must also be equal. For exam-

ple, we are all familiar with the speed v(t) of an ob-

ject at time t, moving in a straight line (rectilinear 

motion) as expressed in terms of its initial speed u, 

constant acceleration a, and time: v = u + at, as a 

linear function of time. Re-

gardless of the units used – 

miles per hour, millimeters per 

year, kilometers per second (or 

even furlongs per fortnight!) – 

the dimensions of each side 

are equal. To see this, note that 

the speeds u and v have di-

mensions of length/time. Ac-

celeration has dimensions 

length/(time)2, so the second 

term on the right, at, has di-

mensions of length/(time)2 × 

time. This is just length/time, 

the definition of speed, as it 

should be. The equation is di-

mensionally consistent. In fact, 

this is a good way to check 

whether the equation is stated 

correctly; if the dimensions are 

inconsistent, the equation is 

most certainly wrong! Of 

course, it could be wrong for 

other reasons, even if the di-

mensions are consistent. 

 This idea of dimensional consistency is fa-

cilitated by introducing notation for three funda-

mental physical quantities: mass [M], length [L], 

and time [T]. The set {[M], [L], [T]} can be 

thought of like atoms from which elements can be 

made, or unit vectors from which all vectors in a 

three-dimensional space can be constructed. Thus, 
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as above, the dimensions for acceleration, length/

(time)2, can be written as [L][T]-2. We shall illus-

trate this technique that is called dimensional anal-

ysis by means of an idealized model of namely a 

simple pendulum.  

 A simple pendulum is defined as a point of 

mass m at one end of an inextensible massless 

string (or rigid rod) of length l; this is fixed at the 

other end. The simple pendulum undergoes small 

oscillations in the presence of a local constant grav-

itational acceleration g in which the friction at the 

connection point and the air resistance are neglect-

ed. Clearly, this is a highly idealized mathematical 

model! What we wish to do is find out how the pe-

riod P of the pendulum (i.e. the time for it to swing 

from one extreme to the other and back again – 

“Tic-Toc”!) depends on its mass, length of the 

string, and gravity by using dimensional analysis. 

As will be noted below, this technique, while mak-

ing simplified assumptions, is extremely powerful 

and can reveal significant insights, based on alge-

bra alone, on the dependence of simple pendulums 

on these physical variables. 

Dimensional Analysis of the Simple Pendulum. 

 The period P of the pendulum obviously has 

dimensions of time, [T]. On the other side of the 

equation, we need to express the dependence of P 

on m, l, and g in a general way. To that end, we 

can write (using the proportionality symbol ) 

P  malbgc.    (1) 

 The point here is that the combinations of 

the dimensions of [M], [L], and [T] on the right-

hand side of this relation must be the same as that 

on the left, namely [T]. The exponents a, b, and c 

may be of either sign. Since the object of this exer-

cise is dimensional consistency, we replace equa-

tion (1) with an equation by introducing a dimen-

sionless constant of proportionality K to yield 

P = Kmalbgc.    (2) 

 Note that K, being dimensionless, is just a 

number, but the method employed here cannot de-

termine its value. A more detailed study of the dy-

namics of a simple pendulum reveals that K = 2π. 

Do you see any potential flaws in the statement for 

equation (2)? How do we know that mass, length, 

and gravity are the only variables that determine 

the period? We have neglected damping due to 

friction at the pivot and air resistance, but does it 

depend on the temperature of the air, or the humidi-

ty? As stated earlier, these last two factors are as-

sumed insignificant. What about dependence on the 

angle of the “swing”? It is clear that to formulate 

the problem correctly we either have to know 

something about the answer or have good physical 

intuition before we are able to answer it! Neverthe-

less, a certain amount of trial and error 

(“experimental mathematics”) can often pay divi-

dends. 

 Perhaps an equally important assumption 

made in the method is that the period should de-

pend on the particular product of power laws stat-

ed. Why should it not be a sum or difference, for 

example, or a transcendental function of some or 

all those chosen independent variables? The case of 

a sum or difference is easily recognized as unrea-

sonable because the units of (for example)           

ma + lb + gc would all be inconsistent, unless sever-

al other dimensional constants were to be intro-

duced, defeating the simplicity of the method. The 

other objection – that of functional dependence – is 

entirely reasonable, and valid in some cases, as we 

shall see below. In the relatively rare situations 

where a more complicated expression is required, it 

can be seen that, by examining limiting cases, the 

product formulation is still justified in those in-

stances. 

 Having pointed out some potential pitfalls 

of the method, we can now proceed with the simple 

pendulum example by referring back to equation 

(2). Expressed in terms of the fundamental dimen-

sions [M], [L], and [T], and recalling that K is di-

mensionless, we have 

[T] = [M]a[L]b{[L][T]-2}c.    (3) 

We now ‘solve’ this equation for the exponents   

{a, b, c}, but to make this a little easier, we rewrite 

equation (3) as 

[M]0[L]0[T]1 = [M]a[L]b{[L][T]-2}c.    (4) 

It is clear that we have three equations derived 

from the three exponents of the dimensions [M], 

[L], and [T], namely, 

  a = 0;     (5a) 

  b + c = 0;     (5b) 

  -2c = 1.     (5c) 

Hence, 
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a = 0, b = 1/2, c = -1/2,    (6) 

and the conclusion follows: 

P = K(l/g)1/2.    (7) 

 Note that the period is independent of the 

mass of the pendulum. Furthermore, the period in-

creases with the pendulum length and decreases 

when the gravitational acceleration increases (for 

example, on more massive planets). 

 Consider a metal pendulum used in a typi-

cal grandfather clock. While it is not a simple pen-

dulum, the model does help us see why a clock 

may lose time during hot summer months. The 

metal rod, which is not inextensible, will lengthen 

slightly when temperature increases, with a corre-

sponding increase in the period (each ‘tic-toc’ takes 

slightly longer time). This decreases the frequency 

f (= P -1) for each oscillation. 

 To illustrate the pendulum frequency, imag-

ine taking our simple pendulum to the moon, where 

g is about one-sixth that on earth. For a given value 

of l, the period, P, would be approximately 2.5 

times longer than it would be on earth. Perhaps this 

is one reason why astronauts used ‘hopping’ gaits 

to move on the surface of the moon. Indeed, a very 

crude model of walking was developed by model-

ing the human leg as a simple pendulum 

(Alexander, 1996). 

More Examples of Dimensional Analysis. 

 Einstein’s equation: ‘The most famous 

equation in the world.’ A cartoon drawn by Gary 

Larson depicts an Einstein-like character in front of 

a blackboard covered with equations that have all 

been crossed out: E = mc,   E = mc3, E = mc7, etc 

(https://medium.com/@_NicT_/on-mornings-

f9b4cdd3fc2a). A janitor has just finished tidying 

his desk, and “Einstein’s” eyes bulge as he hears 

her claim, “Now that desk looks better. Every-

thing’s squared away, yessir, squaaaaaared 

away!” (Larson, 2014). Let’s do the math on this 

one, as they say. Energy has dimensions of force 

multiplied by distance, and as noted above, force 

has dimensions of mass multiplied by acceleration, 

so we write the equation 

E = Kmacb    (12) 

in dimensional terms as  

[M]1[L]2[T]-2 = [M]a{[L][T]-1}b,    (13) 

from which we readily see that a = 1 and b = 2, so 

Einstein’s celebrated mass-energy equivalence for-

mula is indeed given by 

E = mc2,    (14) 

(in this case we know that K = 1).  

 How does the speed, v, of gravity waves on 

the surface of deep water depend on their wave-

length λ and gravity g (with surface tension ne-

glected)? Physically the neglect of surface tension 

is only significant for very short waves (e.g. ripples 

with wavelengths of several mm or less). If  

 v = Kλagb,    (15) 

 we have  

[L][T]-1 = [L]a{[L][T]-2}b,    (16) 

from which a = b =  1/2. Thus  

 v = K ,    (17) 

i.e. the speed of the wave increases with wave-

length. By contrast, for very short waves (ripples), 

gravity may be neglected but surface tension ef-

fects may not. As remarked earlier, the constant K 

can be determined in general only by a detailed 

study of the full physical problem, theoretically, 

experimentally, or in some combination of the two, 

and will not concern us here. Requiring the govern-

ing equation to be dimensionally correct will pro-

duce the necessary functional dependence, provid-

ed of course that we have accounted for all the rele-

vant physical variables in the statement of the prob-

lem. 

 The reader is encouraged to try the follow-

ing problems: 

Astronomy Problems. 

(i) Use the method of dimensional analysis to ex-

press the escape speed V of a projectile (e.g. rock-

et, baseball, etc.) from a spherical planet of radius r 

and mass m in terms of m, r, and G, the universal 

gravitational constant (which has dimensions [L]3

[T]-2[M]-1). 

Answer: V = K(Gm/r)1/2. 

(ii) Use the method of dimensional analysis to ex-

press the radius r of a black hole in terms of its 

mass m, the gravitational constant G (which has di-

mensions  [L]3[T]-2[M]-1), and the speed of light c. 

Answer: r = K(Gm/c2). 

Fluid-dynamical Problems. 

(i) Use the method of dimensional analysis to find 

the pressure P within a soap bubble of radius r and 

surface tension s. 

,    (17)v K g
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Answer: P = Ksr-1. Smaller bubbles burst more 

noisily than large ones (i.e.: listen to freshly opened 

champagne). 

(ii) Use the method of dimensional analysis to find 

the speed v of ripples on the surface of a liquid in 

terms of the wavelength λ, water density ρ and sur-

face tension s (with gravity neglected). 

Answer: v = K(s/ρλ)1/2. This time short waves out-

run long ones. 

Biology Problem. 

Use dimensional analysis to find the tail-beat fre-

quency f of a fish in terms of its body length l, 

muscle stress σ (or force per unit cross sectional ar-

ea), and the fluid density of water, ρ. 

Answer: f = Kl-1(σ/ρ)1/2. The bigger the fish, the 

slower the tail beats (watch Finding Nemo (again) 

to verify this). (For more examples, see Pennycuick 

(1992).) 

The Buckingham Pi Theorem. 

 The method described in this article, dimen-

sional analysis, is based on a technique developed 

by Lord Rayleigh (1915), sometimes referred to as 

the Rayleigh method. It can be formalized as an 

important theorem called the Buckingham Pi Theo-

rem (Adam, 2006). 

Conclusion. 

 As someone who, from my early teenage 

years, wanted to become an astronomer, and yet 

struggled greatly in my algebra classes, I wish I 

had been exposed to the beauty and power of the 

algebraic method described here: dimensional anal-

ysis. Using this technique, linear equations in two 

or three variables are solved with greater ease. 

These variables are the exponents of three funda-

mental dimensional units: Mass [M], Length [L], 

and Time [T]. Understanding dimensional analysis, 

significant insight can be gained in STEM-related 

contexts, and the method provides a considerable 

incentive to engage with “real world” applications. 

 Additional examples may be found in Ad-

am (2006). A particularly fascinating one concerns 

the radius r of the shock front from an atomic ex-

plosion of energy E in an atmosphere of undis-

turbed density ρ, expressed as a function of time t, 

E and ρ. The answer, for those who wish to try this, 

is r = K(Et2/ρ)1/5. 

 Note that we can express the entire notation 

and physical dimensions for any of the models, as 

shown in the figure below. 
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Variable Symbol Dimensions 

Speed v [L][T]-1 

Acceleration a (or g) [L][T]-2 

Period P [T] 

Frequency f [T]-1 

Length/wavelength l [L] 

Mass of pendulum bob m [M] 

Force F [M][L][T]-2 

Muscle stress (force/area or pressure) σ [M][L]-1[T]-2 

Water density ϱ [M][L]-3 

Surface tension (force/length) s [M]][T]-2 

Energy E [M][L]2[T]-2 

Figure 1. Variables and their physical dimensions. 


