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An Example of Nature’s Mathematics: 

The Rainbow 

John A. Adam 

Introduction. 

 It is the author’s contention that ‘nature’ is 

a wonderful resource and vehicle for teaching stu-

dents at all levels about mathematics, be it qualita-

tively at elementary schools (shapes, circular arcs, 

polygonal patterns) or more quantitatively at mid-

dle and high schools (geometrical concepts, alge-

bra, trigonometry and calculus of a single variable). 

This was the motivation for writing A Mathemati-

cal Nature Walk (as well as the somewhat more 

advanced Mathematics in Nature). Within the 

realm of nature the subject of meteorological optics 

is a particularly fascinating one; it includes the 

study of the rainbow as well as others such as ice 

crystal halos and glories. Obviously there is some 

physics involved in the explanation of these phe-

nomena, but fortunately it is not necessary to go 

into a lot of physical detail in order to appreciate 

the value of geometry, trigonometry and high-

school calculus concepts used in modeling the 

beautiful rainbow arcs in the sky. 

 For students in elementary school there is a 

variety of angle-based concepts that can be ad-

dressed when discussing rainbows. Thus, ‘solar 

altitude’ is the angle the direction to the sun makes 

with the horizontal, just as the direction to the top 

of a tree makes an angle with the direction of its 

shadow on the ground (in fact that angle is exactly 

the solar altitude!). By making a large paper cone 

to mimic the ‘rainbow cone’ and varying the angle 

at which students hold it, (Figure 3), they will see 

that if the sun is very low (i.e. close to the horizon), 

then the rainbow arc is almost a complete semicir-

cle, whereas if the sun is too high (altitude greater 

than 42o), then the top of the rainbow is below the 

horizon and therefore not visible (unless the ob-

server is on a hill or in flight; see http://

www.slate.com/content/dam/slate/blogs/

bad_astronomy/2014/09/01/

circular_rainbow.jpg.CROP.original-original.jpg). 

If the student (or anyone!) is fortunate enough to 

see a nearly semicircular rainbow, then the angle 

between the two ‘ends’ of the rainbow and the 

observer – its ‘angular diameter’ – is twice 42o, 

which is not far from a right angle! 

 What about middle-school students? In the 

summer of 2015 I was privileged to teach a dozen 

specially selected 6th – 8th grade students in the 

Virginia STEAM Academy at Old Dominion Uni-

versity. The acronym refers to Science, Technolo-
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gy, Engineering and Applied Mathematics. The 

topics covered included rainbows, ice crystal halos, 

water waves, glitter paths and sunbeams; addition-

ally, the topics ‘Guesstimation’ (i.e. back-of-the-

envelope problems that require estimation) and 

‘dimensional analysis’ (i.e. what happens as things 

get bigger?) were incorporated into the week-long 

class. Given that the mathematical background of 

these students included algebra, geometry and 

trigonometry, much of the material discussed in 

this article was covered, and the results from the 

calculus-based topics were presented qualitatively 

(and very successfully) by engaging the students on 

their understanding of maxima and minima, and 

applying those ideas in this context. 

Doing the mathematics. 

 The primary rainbow is caused by light 

from the sun entering the observer's eye after it has 

undergone one reflection and two refractions in 

myriads of raindrops. An additional internal reflec-

tion produces a frequently-observed secondary 

bow, and so forth (but tertiary and higher bows are 

rarely, if ever, seen with the naked eye for reasons 

discussed below). By adding all the contributions 

to angular deviations of the ray from its original 

direction, the middle- or high-school student can 

verify that for a primary bow the ray undergoes a 

total deviation of D(i) radians, where 

 
 

in terms of the angles of incidence (i) and reflec-

tion (r) respectively (see Figure 1 where the inci-

dent ray is refracted and reflected inside the spheri-

cal drop; Figure 2 illustrates the ray path for the 

secondary bow). But what is this angle? Essentially 

it is the direction through which an incoming ray 

from the sun is ‘bent’ by its interaction with the 

drop to reach the observer’s eye (the reader is re-

ferred to the caption for Figure 1 for more details). 

 The angle of refraction inside the drop is a 

function of the angle of incidence of the incoming 

ray. This relationship is being expressed in terms of 

Snell's famous law of refraction, namely sini = 

nsinr, where n is the relative index of refraction (of 

water, in this case). This relative index is defined 

as the ratio of the speed of light in medium I (air) 

to the speed of light in medium II (water); note that 

n >  1; in fact n ≈ 4/3 for the rainbow, but it does 

depend slightly on wavelength (this is the phenom-

enon of dispersion, and without it we would only 

have bright ‘whitebows’!). The article by Austin & 

Dunning (1991) provides a helpful summary of the 

‘calculus of rainbows,’ as does the even briefer 

‘Applied Project’ in Chapter 4 of Stewart (1998). 

 In view of Snell’s law the high school stu-

dent should attempt to write the angle of refraction 

r in terms of the angle of incidence i using the 

inverse sine function, thus: 

 
Hence equation (1) may be rewritten as 
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Figure 2. The corresponding ray path for the secondary 

rainbow, arising because of a second reflection within the 

raindrops. 

Figure 1. The path of a ray inside a spherical raindrop 

which, along with myriads of other such drops, contributes 

to the formation of a primary rainbow (k = 1).  The devia-

tion angle D(i) referred to in the text (see equation (1)) is 

the obtuse angle between the extension of the horizontal 

ray from the sun and the extension of the ray entering the 

observer’s eye. Its value is approximately 138o. Its supple-

ment, 42o, is the semi-angle of the ‘rainbow cone’ in Figure 

3. 
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 By examining the graph of D(i) in Figure 4 

it is seen that for i [0, π/2] (which is the only 

interval of interest for physical reasons), the condi-

tion for an extremum (minimum in this case) im-

plies there exists a critical angle of incidence ic 

such that D'(ic) = 0. To prove this the student may 

either use implicit differentiation of equation (1) 

(with subsequent use of Snell’s law) to obtain 

 
or directly differentiate the expression (3) and 

equate it to zero to find the critical angle ic from the 

resulting expression below, i.e. 

 
from which it can be found that 

 
Thus, with a generic value for n of 4/3, ic ≈ 1.04 

radians, or about 59.4o for the primary bow. 

 As noted above this extremum is a mini-

mum, i.e. D"(ic) > 0, as can be shown by differenti-

ating the expression (1) a second time. In fact, by 

noting from equation (1) that D"(i) = –4r"(i) and 

utilizing equation (4) it follows that (after some 

algebraic manipulation) 

 
So, D"(ic) > 0 as indicated. Note that in this in-

stance it was not necessary to specify ic so the re-

sult is a global one, i.e. the concavity of the graph 

of D(i) does not change in [0, π / 2], the interval of 

physical interest.  

Exercise for the student: Using equations (3) 

and (6) show that the minimum angle of deviation 

(the ‘rainbow angle’) is 

 
 Each internal reflection adds an amount of 

π - 2r radians to the total deviation of the incident 

ray. Thus, for k internal reflections within a 

raindrop, a term k(π - 2r) is added to the angle 

through which an incident ray is deviated, (see 

Figure 2, for the secondary bow, k = 2), yielding 

the expression 

  
Note that the result in equation (9) is modulo 2π.  

Although realistically k ≤ 2 (see below for details), 

with k internal reflections the corresponding result 

for the critical angle of incidence that gives rise to 

the minimum deviation is 

 
This result is established using exactly the same 

method to arrive at equation (6). For the primary 

bow (k = 1) this reduces (as it should) to equation 

(6) above. Additionally, equation (9) reduces to 

equation (3) for k = 1 since k(k + 2) = 3. 

 It is an interesting trigonometric exercise to 

eliminate all dependence on the angle of incidence 

(as Kepler did in 1652) to prove from equation (8) 

that 

 
To achieve this, rewrite equation (8) as 

 

 
Then, by expanding the equation 

 
it is possible to write cos[D(ic)] in terms of sin A , 

cos A , sin B and cos B, each of which can be found 

easily from the definitions of A  and B in equation 

(12). The result is a rather nasty expression which 

can be reduced algebraically to equation (11). 

Voilà! This has been generalized to higher-order 

bows (see Adam 2008), but it would take us too far 

afield to describe here; essentially the same ideas 

are involved. 

Some numerical values. 

 Thus far, we have been describing a gener-

ic, colorless type of rainbow. For a ‘generic’ mono-

chromatic rainbow (the ‘whitebow’ referred to 
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above), the choice n = 4/3 yields, from expression 

(11), 

 
The supplement of this angle (≈ 42o) is the semi-

angle of the rainbow ‘cone’ formed with apex at 

the observer's eye, the axis being along the line 

joining the sun to the eye, extended to the antisolar 

point (see Figure 3). 

 So what happened to the colors of the rain-

bow? They have of course been there all along, and 

all we need to do is to utilize the fact that the re-

fractive index n is slightly different for each wave-

length of light. Blue and violet light get refracted 

more than red light; the actual amount depends on 

the index of refraction of the raindrop, and the 

calculations thereof vary a little in the literature, 

because the wavelengths chosen for red and violet 

may differ slightly. Thus, for red light with a wave-

length of 656 nm (1 nm = 10–9 m), the cone semi-

angle is about 42.3o, whereas for violet light of 405 

nm wavelength, the cone semi-angle is about 40.6o 

an angular spread of about 1.7o for the primary 

bow. (This is more than three times the angular 

width of a full moon!) The corresponding values of 

the refractive index differ very slightly: n ≈ 1.3318 

for the red light and n ≈ 1.3435 for the violet – less 

than a one percent increase! Similar (though slight-

ly wider) dispersion occurs for the secondary bow, 

but the additional reflection reverses the sequence 

of colors, so the red color in this bow is on the 

inside edge of the arc. In principle more than two 

internal reflections may take place inside each 

raindrop, so higher-order rainbows, i.e. tertiary (k = 

3), quaternary, (k = 4) etc., are possible. Each addi-

tional reflection of course is accompanied by a loss 

of light intensity because of transmission out of the 

drop at that point, so on these grounds alone, it 

would be expected that even the tertiary rainbow (k 

= 3) would be difficult to observe or photograph 

without sophisticated equipment; however recently 

several orders beyond the secondary have been 

identified and photographed (see the cited articles 

by Edens, and Edens & Können). The reader’s 

attention is also drawn to the superb website on 

atmospheric optics, in particular the following link: 

http://www.atoptics.co.uk/rainbows/ord34.htm. 

 It is possible to derive the angular size of 

such a rainbow after any given number of reflec-

tions using equations (9) and (10) (Newton was the 

first to do this). Newton’s contemporary, Edmund 

Halley, noted that the third rainbow arc should 

appear as a circle of angular radius nearly 40o 

around the sun itself. The fact that the sky back-

 
3/2

9 20
arccos 138 .

16 27
cD i D

   
         

(13) 

Figure 3. The ‘rainbow cone’ for the primary rainbow. For 

the secondary bow (k = 2) the cone semi-angle is approxi-

mately 51o, as may be calculated from equations (9) and 

(10).  

Figure 4. The graph of the deviation angle D(i) for the pri-

mary bow from equation (3) as a function of the angle of 

incidence (both in radians). Note that the minimum devia-

tion of approximately 2.4 radians (≈ 138o) occurs where 

the critical angle of incidence ic ≈ 1.04 radians (≈ 59.4o). 

These values may be calculated directly using equations 

(3) and (6). The graph shows that above and below ic there 

are rays deviated by the same amount (via the horizontal 

line test), indicating that at ic these two rays coalesce to 

produce the region of high intensity we call the rainbow. 
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ground is so bright in this vicinity, coupled with 

the intrinsic faintness of the bow itself, would 

make such a bow almost, if not, impossible to see 

or find without sophisticated optical equipment. 

Exercise for the student: Use the gener ic value 

for the refractive index of water, n = 4/3, in equa-

tions (9) and (10) to show for the tertiary rainbow 

(k =  3) that ic ≈ 70.6o and D(ic) ≈ 321o, so the 

‘bow’ is at about an angle of 39o from the incident 

light direction. In fact, this will appear behind the 

observer as a ring around the sun!  

Exercise for the student: Calculate the angular  

width subtended at the eye by a ‘baby aspirin’ held 

at arm’s length. Then see if you can ‘cover’ the full 

moon by extending your arm while holding the 

aspirin!  

An experiment: “road-bows.” 

Have you ever noticed a rainbow-like re-

flection from a road sign when you walk or drive 

by it during the day? Tiny, highly reflective 

spheres are used in road signs, sometimes mixed in 

paint, or sometimes sprayed on the sign. Occasion-

ally, after a new sign has been erected, quantities 

of such ‘microspheres’ can be found on the road 

near the sign (see http://apod.nasa.gov/apod/

ap040913.html for an excellent picture of such a 

bow). I have had my attention drawn to such a find 

by an observant student! It is possible to get sam-

ples of these tiny spheres directly from the manu-

facturers, and reproduce some of the reflective 

phenomena associated with them. In particular, for 

glass spheres with refractive index n ≈ 1.51 scat-

tered uniformly over a dark matte plane surface, a 

small bright penlight provides the opportunity to 

see a beautiful near-circular bow with an angular 

radius of about 22o (almost half that of an atmos-

pheric rainbow). In such an experiment this bow 

appears to be suspended above the plane as a result 

of the stereoscopic effects because the observer’s 

eyes are so close (relatively) to the spheres com-

pared with passing several yards from a road sign. 

More details of the mathematics can be found in 

the article by Crawford (1998) and Chapter 20 of 

Adam (2012). 

 

Related topics in meteorological optics. 

 Note that in the list of topics below each 

meteorological phenomenon can be examined as a 

topic in mathematical physics because the subject 

of optics is very mathematical. At times, it required 

very sophisticated mathematics. The author recom-

mends another enrichment activity in which stu-

dents search for each of the topics (and others) 

below on the ‘Atmospheric Optics’ website men-

tioned above: http://atoptics.co.uk/. There is a vast 

selection of topics (with many photographs) to 

choose from, including shadows, ice crystal halos 

around the sun or moon, ‘sundogs,’ reflections, 

mirages, coronas, glories, sun pillars as well as, of 

course, rainbows. The advantage of this site (and 

its ‘sister’ site, Optics Picture of the Day (OPOD: 

http://atoptics.co.uk/opod.htm)) is that students at 

all levels, elementary, middle and high school, will 

be able to find material of interest to them. These 

sites are replete with straightforward physical ex-

planations and illustrations of the phenomena, but 

there is little, if any, mathematical discussion so 

they can be appreciated in a scientifically accurate 

way by students at any level of mathematical profi-

ciency. The book A Mathematical Nature Walk, 

together with the more advanced Mathematics in 

Nature cited in the bibliography, can provide a 

starting point for both teachers and students inter-

ested in pursuing some of the mathematical aspects 

of these phenomena. As a further example, a very 

brief description of glories (with an associated 

‘student teaser’) is provided below. 

 Although ice-crystal halos are only briefly 

mentioned in the preceding paragraph, students at 

all levels can be encouraged to look for them. 

These can appear around the sun or full moon with 

surprising frequency (though it must be empha-

sized again that you should never look directly at 

the sun; block it off with your hand or a convenient 

chimney!). They are formed by sunlight passing 

through myriads randomly oriented, nearly regular 

hexagonal prismatic ice crystals, composing cirrus 

clouds, the very highest type of cloud we generally 

see (during the day at least). In distinction to rain-

bows, the most common halos are smaller in angu-

lar radius (about 22o as opposed to 42o) and exhibit 

a reddish tinge on the inside of the arc – a reversal 

of colors compared with the primary bow. This is 

http://apod.nasa.gov/apod/ap040913.html
http://apod.nasa.gov/apod/ap040913.html
http://atoptics.co.uk/
http://atoptics.co.uk/opod.htm
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because, unlike the mechanism producing the pri-

mary bow, there is no reflection occurring within 

the crystals to produce these particular halos, only 

refraction. I live about a mile from Old Dominion 

University and walk to my office; as a result I gen-

erally see such halos (and other types also) several 

times a month; sadly, far more frequently than I 

witness rainbows. On an otherwise clear night, a 

full moon embedded in a thin cirrus cloud may 

exhibit similar such halos, which can be quite 

prominent by virtue of the moon being so much 

less bright than the sun. Indeed, I have frequently 

been contacted by friends and students who witness 

the latter but have never noticed a halo around the 

sun! 

Exercise for the student: Imagine a regular  

hexagonal prism with a light ray entering side ‘1’, 

and exiting side ‘3’ (see the Atmospheric Optics 

website for more details and its interactive ‘mouse’ 

tasks to discover the minimum angle of deviation 

for both rainbows and halos). Using the same geo-

metric, trigonometric and calculus concepts applied 

to rainbows in the body of the article, show that the 

minimum angle of deviation for such rays is about 

22o, the angular radius of the most commonly visi-

ble halo. 

Student teaser: When I lived in England I saw 

many more rainbows than I do living in Norfolk, 

Virginia. Why do you think this was? (No, it was 

not because the annual rainfall where I lived was 

more than it is in Norfolk – in fact it’s rather less!). 

Think about latitude: I lived at about 52oN; now I 

live at about 37oN, fifteen degrees further south. 

(You can imagine how excited I was to see the 

constellation of Orion and Sirius (the ‘Dog star’) so 

much higher in the winter night sky than when I 

lived in England!) 

Glories. 

Mountaineers and hill climbers have no-

ticed on occasion that when they stand with their 

backs to the low-lying sun and look into a thick 

mist below them, they may see a set of colored 

concentric circular rings (or arcs thereof) surround-

ing the shadow of their heads. Although an individ-

ual may see the shadow of a companion, the ob-

server will see the rings only around his or her 

head. They may also be seen (if you know where to 

look) from airplanes. This is the meteorological 

optics phenomenon known as a glory. Cloud drop-

lets essentially ‘backscatter’ sunlight back towards 

the observer in a mechanism similar in part to that 

for the rainbow. The glory, it is sometimes 

claimed, is formed as a result of a ray of light tan-

gentially incident on a spherical raindrop being 

refracted into the drop, reflected from the back 

surface and reemerging from the drop in an exactly 

antiparallel direction (i.e. 180o)  into the eye of the 

observer, but this is actually incorrect (see the 

‘student teaser’ below). 

Student teaser: Why is the ray path allegedly 

associated with the formation of a ‘glory’ as illus-

trated in Figure 5 (and in some meteorology text-

books) incorrect? Use equation (3) to investigate 

this.  

Conclusion. 

 This article presents some of the basic 
mathematical concepts and techniques undergird-

ing a relatively common (and beautiful) phenome-

non in meteorological optics. The analysis present-

ed here does not contain new mathematics; it can 

be found from many sources because the subject of 

meteorological optics has been around for a very 

long time! What is emphasized, however, is the 

presentation of these ideas as a potential enrich-

ment topic for (i) ‘qualitative’ mathematical model-

ing in elementary classrooms and (ii) more quanti-

tative approaches in middle and high school class-

rooms. It should also be noted that the many more 

subtle features associated with these and other 

optical effects in the atmosphere require far more 

powerful and sophisticated mathematical tools to 

explain them. Nevertheless (though space does not 

permit it), aspects of the above-mentioned phenom-

ena of ice crystal halos and glories may also be 

discussed at the level presented here. More details 

Figure 5. An incorrect ray path explanation for the glory.  
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may be found in the references listed. It is hoped 

that this article will also ‘whet’ the appetite of 

interested instructors and students to pursue these 

aspects in more detail.  

 A further suggestion may be made. The 

website Earth Science Picture of the Day (EPOD: 

epod.usra.edu), which is a service of the Universi-

ties Space Research Association (USRA), publish-

es photographs from a variety of subject areas: 

geology, oceanography, space physics, meteorolog-

ical optics, agriculture, and many more. Anyone is 

invited to submit their photograph of an interesting 

optical or geological phenomenon, and is encour-

aged to write a short summary for the layman ex-

plaining the picture and, where possible, the basic 

science behind it. A recent submission by the au-

thor (August 15th, 2016), for example, uses simple 

proportion to estimate the height of a tree canopy 

using the ‘pinhole’ elliptical patches of light cast 

on the ground by gaps in the leaves of the tree 

(http://epod.usra.edu/blog/2016/08/estimating-tree-

height-using-natural-pinhole-cameras.html). For a 

propos that is the topic of this article, see http://

epod.usra.edu/blog/2017/07/streaky-rainbow-in-

zion-national-park.html. The site provides useful 

educational links for the daily pictures and is a 

valuable resource for teachers and students alike. 
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Appendix: More mathematical patterns in na-

ture. 

 What follows below is obviously only a 

partial list of patterns that the attentive observer 

might see on a “nature walk,” and could form the 

basis of enrichment activities at all levels of student 

exposure to mathematics. The elementary, middle 

or high school teacher could adapt the material for 

his or her own students. Here are some possible 

topics: 

 Basic two dimensional geometric shapes 

that occur (approximately) in nature can be identi-

fied: 

 Waves on the surfaces of ponds or puddles 

expand as circles; 

 Ice crystal halos commonly visible around the 

sun are generally circular; 

 Rainbows have the shape of circular arcs (as 

noted already); 

 Tree growth rings are almost circular. 

But there are many other obviously non-circular 

and non-planar patterns: 

 Hexagons: snowflakes generally possess hexag-

onal symmetry; 

 Pinecones, sunflowers and daisies (amongst 

other flora) have spiral patterns associated 

with the well-known Fibonacci sequence; 

 Ponds, puddles and lakes give scenes of ap-

proximate reflection symmetry (depending on 

the position of the observer); 

 Cross-sections of various fruits also exhibit 

interesting symmetries; 

 Spider webs have polygonal, radial and spiral-

like features; 

 Long bendy grass has an approximately para-

bolic shape; 

 Starfish (suitably arranged) exhibit pentagonal 

symmetry; 
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 The raindrops that scatter "rainbow" light into 

the eye of an observer essentially lie on cones 

with vertices at the eye (as discussed in this 

article); 

 Cloud patterns, mud cracks and also cracks on 

tree bark can exhibit polygonal patterns; 

 Clouds can also form wavelike "billow" struc-

tures with well-defined wavelengths, just as 

with ripples that form around rocks in a swiftly 

flowing stream; 

 In three dimensions, snail shells and many 

seashells and curled-up leaves are helical in 

shape and tree trunks are approximately cylin-

drical. 

 In view of these patterns, even at an ele-

mentary level, many pedagogic mathematical in-

vestigations can be developed to describe such 

patterns - for example estimation, measurement, 

geometry, functions, algebra, trigonometry and 

calculus of a single variable. Basic examples might 

include: 

 The use of similar triangles and simple propor-

tion;  

 A table of tangents to estimate the height of 

trees; 

 Measuring inaccessible horizontal distances 

using congruent triangles. 

Simple proportion can again be used in estimation 

problems, such as: 

 Finding the number of blades of grass in a 

certain area, or the number of leaves on a tree. 

More geometric ideas appear when studying topics 

such as: 

 The relationship between the branching of 

some plants, such as sneezewort (Achillea ptar-

mica), and the Fibonacci sequence can be in-

vestigated; 

 The related "golden angle" can be studied, and 

its occurrence on many plants (such as laurel) 

investigated; 

 The angles subtended by the fist, and the out-

stretched hand, at arm's length can be estimat-

ed and used to identify the location of 

"sundogs" (parhelia) and ice crystal halos on 

days with cirrus clouds near the sun. 

 Consequences of "the problem of scale" and 

geometric similarity can also be investigated. This 

applies in particular to the size of land animals; the 

relationship of surface area to volume, and its im-

plications for the relative strength of animals. By 

considering (and constructing) cubes of various 

sizes, much insight can be gained about basic bio-

mechanics in the animal kingdom, and much fun 

(and learning!) may be had by thinking about such 

questions as: 

 Why King Kong could not really exist, and 

 Why elephants are not just large mice. 

 Furthermore, simple ideas such as scale 

enable us to compare, at an elementary level, me-

tabolism and other biological features (such as 

strength) in connection with pygmy shrews, hum-

mingbirds, beetles, flies and other bugs, ants and 

African elephants to name a few groups! 
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