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Introduction 

Mathematics has been described as the science of 

patterns, and patterns are all around us – explaining 

in part why mathematics is so important and so 

useful! Waves are a fine example of patterns. 

When I lived in Northern Ireland, I stood some-

times on a high cliff overlooking the North Atlantic 

Ocean to watch the waves traveling towards the 

shore. They changed from rolling patterns out in 

the ocean to rising, curling and breaking patterns as 

they approached the shore. But are the waves and 

the water the same thing? Was the water in the 

breaking waves the same as the water out in the 

deep ocean? No—that water was at the beach long 

before the wave arrived. So, the wave is not the wa-

ter—it is the pattern, the shape, the outline of the 

water surface as it changes in time and space. 

Whatever type of wave motion is occurring, there 

are two things that we can note based on our expe-

rience: (i) energy is propagated from points near 

the source of waves to points which are distant 

from it, and (ii) the disturbances travel through the 

medium (whatever that may be) without giving the 

medium as a whole any permanent displacement.  

If we throw a stone into a pond, the ripples spread 

outwards over the surface carrying energy with 

them, but if we watch, say, a cork on the surface 

we see that it, and hence the water, does not move 

with the waves, but bobs up and down periodically. 

It is found that whatever the nature of the medium 

through which the waves are transmitted, whether 

it be air, a stretched string, a liquid, an electric ca-

ble or deep space, the above two properties are 

common to all types of wave motion, and enable 

them to be related together. (A caveat: seismic 

waves do cause permanent displacement because 

they carry so much energy associated with an 

earthquake). 

So what does all this have to do with teaching stu-

dents mathematics? First, since patterns abound in 

the world around us, we can readily observe wave 

motion in water, whether inside or outside the 

home! Water waves are readily accessible and ob-

servable to many students, even if they (the stu-

dents or the waves) are confined to the bathtub or 

kitchen sink! They can make their own narrow lit-

tle pond, lake or ocean by putting sand and water in 

a plastic soda bottle and experimenting with vari-

ous tipping and sloshing motions (making sure the 

top is tightly screwed on, of course.) They can add 

a little ‘boat’ of some kind to see how it bobs 

around on the waves. All this can help build scien-

tific and, I argue, mathematical intuition in chil-

dren. By watching how waves ‘react’ around pro-

truding plants, rocks and boundaries can help chil-

dren intuitively appreciate concepts like reflection 

and even refraction. And this can be very useful in 

later science classes when students are taught about 

light and its properties. (A very useful account of 

4th graders ideas about light can be found in Chap-

ter 10 of the “How Students Learn” reference). 

Every Equation Tells a Story: Waves on Water 

John Adam 
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And when dealing with natural phenomena of all 

kinds, mathematics and science go hand in hand. 

So how can watching waves on water help students 

think about light? A useful mental mathematical 

construct is to ask students to imagine a line (or 

lines) perpendicular to the waves they see rolling 

in towards the beach, or to the expanding circular 

waves on a pond or puddle. These lines can be 

thought of as rays, which are a mathematical ab-

straction we use all the time when thinking of light 

(“catching some rays”). By thinking about these 

seemingly different geometrical ideas the student 

is, in effect being exposed to the complementary 

descriptive ideas of rays and waves, and establish-

ing in their minds (for the future, perhaps) that 

things are not necessarily always “either/or” but 

sometimes “both/and.” 

The mathematical structure of a wave 

Waves do not go on forever of course, but a con-

venient and very useful mathematical representa-

tion of a wave is a sine function, y = sin θ, for ex-

ample. This periodic function represents an oscilla-

tion of infinite extent. This “wave function” de-

fines the position of a particle in the medium at any 

position and time as we shall see. There are several 

basic definitions to introduce in connection with 

this function: (i) the wave speed (c) – the speed 

with which is moves to the left or right (in a one-

dimensional sense); (ii) the amplitude (a) – the 

maximum magnitude of the displacement from y = 

0; (iii) the period (T) – the time for one wave cycle 

(i.e. from crest to crest or trough to trough) to pass 

a fixed location; (iv) the frequency (f) – the number 

of cycles in a unit of time; (v) the wavelength (λ) – 

the distance between any two points at correspond-

ing positions on successive repetitions in the wave, 

so (for example) from one crest or trough to the 

next. 

To model a wave using the sine func-

tion, consider the ratio of the angle θ 

and the position x, 

θ/x = 2π/λ, or θ = 2πx/λ. The sine function has am-

plitude 1 so multiplying by the amplitude a we can 

write the function as y(x) = asin (2πx/λ). But we 

recall from algebra that if y(x) is some function, 

then y(x−d) is the same function translated in 

the positive x-direction by a distance d. And in 

time t, the wave will have traveled a distance ct (in 

appropriate units of time and distance respective-

ly). Therefore, we may rewrite the wave function 

as  

 

In practical situations such as those discussed be-

low a lot of other complicated equations must be 

solved to be able to write an equation for the speed 

of waves. Very often they are said to be dispersive 

because the speed c depends on their wavelength as 

in equation (1) below. 

Speed of surface gravity waves 

We now examine in detail a fundamental equation 

describing the speed of waves on the surface of 

water – an above-mentioned complicated one! For 

the combined effects of both forces, the speed c of 

an individual wave crest along a channel of con-

stant depth is (Adam, 2006): 

 

where λ is the wavelength of an individual wave, f 

is its frequency, ρ is the density of water; h is the 

depth of the channel and γ is the coefficient of sur-

face tension. The gravitational acceleration is g. 

Equation (1) also describes a fundamental relation-

ship between the speed, wavelength and frequency 

of a particular wave, namely c = λf. This is the fa-

miliar “speed equals distance divided by time” for-

mula in disguise: wavelength is the distance be-

tween adjacent crests (or troughs), and frequency is 

the number of crests (or troughs) that pass a partic-

ular point per unit time, so they have dimensions of 

length and (time)-1 respectively. The hyperbolic 

tangent function also needs to be defined; it is the 

following combination of exponential functions: 
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Here, x = (2πh/λ) > 0 since h and λ are both posi-

tive. Note that limx→∞tanhx = 1, and limx→0tanhx = 

x. These limiting cases will be useful in what fol-

lows. 

Deep Water 

(i) Long waves 

For our purposes, “deep” here means that the 

wavelength λ is sufficiently small compared with 

the depth of the water, i.e. 2,h >> λ, where the sym-

bol >> means “very much greater than.” Of course, 

this statement (i.e. h >> 0.16 λ) is rather vague, and 

can vary depending on context, but for our purpos-

es even h ≥ λ/3 will suffice, given how rapidly the 

hyperbolic tangent function approaches one (for 

example, tanh2 ≈ 0.964 and tanh3 ≈ 0.995). In 

view of this, the above so-called strict inequalities 

can be replaced by the approximations h ≥ λ/2 or 

even h ≥ λ/3. By replacing tanh(2πh/λ) with 1, 

equation (1) now reduces to 

 

Now what ‘story’ does this equation ‘tell’? Notice 

one very important feature of this equation: the 

channel depth h does not appear. The wave speed 

is independent of the depth; it is the same for any 

depth channel provided the criterion of ‘deep 

water’ is satisfied. In effect, this formula defines 

the speed for waves that “feel” the effects of gravi-

ty and surface tension, but do not “feel" the bottom 

of the channel (or reservoir, etc.)  

But we can take this yet further. For “long” waves 

i.e. large wavelengths (but still less than 2πh), so 

that the second term is negligible compared with 

the first term. This means that the wave motion is 

dominated by the gravitational force. Then equa-

tion (3) reduces to  

 

Since the only variable quantity is λ we see that the 

speed of individual waves is proportional to the 

square root of its wavelength. Simply put, the long-

er the wavelength, the faster the wave. Ocean 

waves are in this category (with the exception of 

tsunamis which have long wavelengths; see (iii) 

below). 

(ii) Short waves 

At the other extreme, we have “short” waves, i.e. 

the first term is now negligible compared with the 

second term. Because of this, the assumption of 

deep water is even more valid than in part (i) 

above. Now equation (3) takes the form  

 

Now the speed of the wave is inversely proportion-

al to the square root of the wavelength. These 

waves (ripples) are completely dominated by sur-

face tension, and the shorter they are the faster they 

move. They can be seen fleetingly on a puddle 

when raindrops fall on them, or even on the gentle 

slope of longer gravity waves when viewed, say, 

from a boat on the water. 

Shallow water 

(i) Long waves 

Now let's go to the other extreme from deep water 

and examine shallow water waves. This means that 

the depth of water is small compared with the 

wavelength, i.e. h << λ. In view of the fact, noted 

above, that as limx→0tanhx = x for x = 2πh/λ (and 

because the surface tension term can be neglected 

for large values of λ), formula (1) reduces to the 

very simple form 
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These waves do “feel” the bottom because of the 

dependence on the depth h, and the wavelength λ is 

now absent from the expression. This is an im-

portant result: it means that the wave speed is inde-

pendent of wavelength. It follows that all the 

waves travel with the same speed if the channel 

depth is constant, and so any complex initial wave 

configuration may retain an identifiable shape for 

quite some time afterwards. Tsunamis are general-

ly considered as shallow water waves; with wave-

lengths of several hundred km they are long com-

pared with typical ocean depths of several km.  

(ii) Short waves 

But what about short waves on shallow water? This 

situation is effectively ruled out because of oppos-

ing assumptions: shallow water means waves are 

long compared with depth, so they will only be 

considered as short if (using equation (3) in the 

shallow water limit) λ << 2π(γ/ρg)1/2.  

 

Arithmetic-geometric mean inequality  

Let us return to equation (3) for deep-water waves 

‘driven’ by both surface tension and gravity, be-

cause there is more of the story to tell. In the ex-

treme cases given by equations (4) and (5) respec-

tively we have seen that the square of the speed 

behaves in a (i) linear and (ii) a rectangular hyper-

bolic fashion respectively, as functions of wave-

length. In the intermediate region, i.e. where the 

terms gλ/2π and 2πγ/ρλ are comparable, both forces 

are also comparable, and the respective graphs of c 

(λ) must connect. This is illustrated generically in 

Figure 1 as c = (λ + λ-1)1/2. 

The arithmetic-geometric mean inequality tells us, 

in particular, that if a > 0 and b > 0 then 

 

Equality occurs if and only if a = b. This result, 

which tells us that the arithmetic mean is never less 

than the geometric mean, is easily established by 

considering the inequality  

 

In Figure 2 a geometric representation of this result 

is shown. The inequality can be generalized to a set 

of n positive numbers, but we need only two here. 

Then we can obtain the result we seek by writing 

equation (3) for brevity as  

 

Clearly, if c has a minimum then so does its square. 

Applying the inequality (7) we see that the sum of 

the terms in equation (8) is never less than 
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Figure 1: Graph of wave speed (c) vs. wavelength λ for a generic 
choice of c = (λ + λ-1)1/2. 

Figure 2: Geometric illustration of the AM-GM inequality.  
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and so the minimum speed is  

 

Solving equation (8) for λ using this minimum val-

ue we find that the value for which this minimum 

occurs (a double root) is  

 

In principle there is no limit to the maximum speed 

of water waves if their wavelength is small enough. 

It might be thought that a similar conclusion ap-

plies to very long waves as well, but sooner or later 

the waves in this limit must be considered shallow, 

and the maximum speed c is then just (gh)1/2 as we 

have seen above. We will put some numbers in 

here. For water at 20o C, γ ≈ 73 dynes/cm, ϱ = 1 

gm/cm
3
 and g ≈ 981 cm/s

2
, so λcmin ≈ 1.7 cm, less 

than one inch. For wavelengths less than or greater 

than this, the dominant force maintaining the wave 

motion is respectively surface tension or gravity. 

The corresponding minimum speed is approxi-

mately 23 cm/s. This means that any breeze or gust 

of wind with speed less than this will not generate 

any propagating waves, other than a transient dis-

turbance. Wind speeds above this minimum value 

will in principle generate two sets of waves, with 

wavelengths on each side of cmin, i.e. one set with λ 

< λcmin (ripples) and one set with λ > λcmin (gravity 

waves). Note that these results may also be derived 

using calculus, and this is summarized in Appendix 

1. 

Several “equation stories” have been unfolded in 

this article (and more briefly in Appendix 2) based 

on a formula for the speed of waves on the surface 

of bodies of water. Furthermore, implicit connec-

tions—some tentative, some more concrete—can 

been made to teaching mathematics from elemen-

tary through middle and high school. In no particu-

lar order, these can be summarized more explicitly 

as follows: (i) - making basic observations and esti-

mates about the speed of waves near the shoreline 

– are they as fast as a car traveling in heavy traffic? 

Or in town? Or on a highway? (ii) – elaborating the 

basic concept of “distance = speed × time” as ap-

plied to waves, relating wavelength, speed and pe-

riod of waves (see equation (1); (iii) – in the small 

wavelength limit, estimate the speed of waves in 

puddles – e.g. are they faster than a bee flying from 

flower to flower? (iv) – use of the exponential 

function, and relatedly (v) – an introduction to the 

hyperbolic tangent function and what its graph 

looks like in several limiting cases; (vi) – algebraic 

and geometric connections to the arithmetic and 

geometric means, especially as applied to the 

smallest possible speed of water waves; (vii) – use 

of qualitative ideas about speed of waves to explain 

wave refraction (with implications for the refrac-

tion of light); (viii) – a straightforward application 

of the concept of the derivative to draw conclu-

sions about how circular waves intersect (thus con-

necting the conic sections circles and hyperbolas); 

and (ix) – some arithmetical considerations about 

the speed of tsunamis, speedboats and tides. 

As should be apparent from this article, I look for 

several types of water waves when I make my 

neighborhood walk in the mornings, especially if it 

has rained recently. A breath of wind is enough to 

raise ripples on the surface of puddles, and a soli-

tary raindrop falling from an overhead branch is 

sufficient to set up a fascinating set of concentric 

circles, propagating outward smoothly from their 

center. Then there are longer wind-induced waves 

frequently visible on the surface of the inlets of the 

Lafeyette river; rarely is it totally calm, and even 

then an occasional underwater dweller will break 

the surface to catch a fly hovering near the surface. 

Frequently a committee of ducks will launch them-

selves into the water as I approach them. After the 

initial splashes have died down, the ducks produce 

interacting wakes as they head away from me to 

more suitable gathering place across the water.  

So may we all continue to encourage our students, 

no matter their ages, to enjoy wave hunting! 

Appendix 1: Deriving equation (9) using differen-

tial calculus.  
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The derivative of c
2
 with respect to λ is, from equa-

tion (8),  

 

on taking the positive root. Since the second deriv-

ative is always positive for λ > 0 it follows that c
2 

(and hence c) is a minimum there. That minimum 

speed is readily found from equation (8). 

Appendix 2: Other water-wave related topics for 

further study. 

(i) Wave refraction 

It is appropriate at this point to mention wave re-

fraction: as a result of the ‘story’ above we now 

have a simple model explaining why ocean waves 

line up parallel to the beach, even if far out to sea 

they are approaching it obliquely (see the photo-

graph in Figure 3). Consider the wavelength λ of 

any particular wave you are observing. Far from 

the beach, the wave is in deep water, of depth H 

say. From equation (4) (long waves in deep water), 

their speed c is proportional to √λ. For that part of 

the wave that is closer to the beach, it is in shallow 

water (of depth h, say, where H >> h), so from 

equation (6) c is proportional to √h, which is of 

course smaller than √λ. Therefore, that part of the 

wavefront nearest the beach slows down compared 

to the part further out, and the whole wavefront 

“slews” around and lines up parallel to the beach.  

(ii) Speedboats 

It is of interest to note that speedboats on lakes or 

harbors or near the beach are often subject to the 

shallow water speed restriction in equation (6). As 

this speed is reached, the waves created by the craft 

just pile up in a big wave ahead of it, and the boat 

is effectively climbing uphill, making it hard to 

“power through”. In a depth of 6 meters, this criti-

cal speed is just under 30 km/hr. Although the 

speeds are very different, this is similar in some 

respects to aircraft trying to “break the sound barri-

er.” 

(iii) Tides 

Interestingly, tides are also very shallow water, 

long period waves. Consider the following very 

crude (and therefore simplistic) description. As the 

Earth rotates, the tidal bulges caused by the moon 

and sun effectively travel around the surface, and 

at any given moment there are two “high tides” on 

opposite sides of the Earth, at least if the Earth 

were a perfectly smooth sphere. The speed of tides 

in the open ocean is, say 700 km/hr., so every hour 

there will be a high tide somewhere 700 km farther 

along the coast. The tidal pattern travels around the 

globe. 

(iv) Ship waves and wakes 

The subject of ship waves and wakes has not been 

addressed here, but interesting discussions of these 

(and the subject matter in this article) using Google 

Earth can be found in Aguiar and Souza (2009) and 

Logiurato (2011). It should also be pointed out that 

the discussion in this article is based on something 

called linear theory. What this means in principle 

is that the wave amplitude (crudely, the height) is 

very small (technically, “infinitesimal”!), so no gi-

ant waves or river bores can be described accurate-

ly with this theory. In practice, however, it is very 

useful for many of the types of waves we do see on 

the surface of oceans, lakes and puddles. 
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Figure 3: Example of waves being refracted parallel to a beach.  
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(v) Wave intersections 

Having discussed the fundamental equation (1) for 

surface gravity waves, I share a recent experience. 

Walking by the water one morning, I noticed a sin-

gle duck sitting peacefully about thirty yards from 

me. As it heard my approaching footsteps, it 

scrambled to “walk on water,” flapping its wings to 

achieve lift as it raced out across the watery run-

way. Each time its webbed foot touched the water 

surface, of course, waves were generated. Long 

before it finally became airborne, a line of these 

waves started to interfere with each other and pro-

duce fascinating intersection patterns. I wish I had 

brought my camera with me. But it did prompt a 

related question in my mind. If two pebbles are 

thrown into a pond one after the other (therefore 

acting as distinct “point” sources of waves), what 

is the path of the point(s) of intersection of the 

waves? However, although these intersections are 

quite difficult to see in practice, the mathematics 

below shows that the path is a surprisingly well-

known curve. 

These circular waves move outwards in time t with 

a certain constant speed c. We suppose that the 

points of intersection of the two circular wave pat-

terns are a distance r1(t) away from the center of 

circle 1 and a distance r2(t) away from the center of 

circle 2. Since the speed of the waves is constant, 

then from differential calculus, their speed is the 

rate of change of radius with respect to time, so

 

But this is just the condition that the points of inter-

section follow a hyperbolic path, because a hyper-

bola is defined as follows: given two distinct points 

(the foci, here the centers of the circles), a hyper-

bola is the locus of points such that the difference 

between the distance to each focus is constant. The 

resulting intersections for the two sets of waves are 

shown in Figures 4(a) and 4(b).  
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